Loading…
Purification and functional characterization of MerD. A coregulator of the mercury resistance operon in gram-negative bacteria
Mercury resistance operons (mer) from transposons Tn21, Tn501, and plasmid pDU1358 are highly homologous and inducible with Hg2+. The regulatory gene merR is transcribed from one promoter, which is divergently oriented from the promoter for the other mer genes. MerR, the product of the regulatory ge...
Saved in:
Published in: | The Journal of biological chemistry 1991-10, Vol.266 (28), p.18538-18542 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mercury resistance operons (mer) from transposons Tn21, Tn501, and plasmid pDU1358 are highly homologous and inducible with
Hg2+. The regulatory gene merR is transcribed from one promoter, which is divergently oriented from the promoter for the other
mer genes. MerR, the product of the regulatory gene, negatively regulates its own expression as well as the expression of
the other genes. MerR activates transcription of the operon in the presence of inducing concentrations of Hg2+. The most promoter
distal gene, merD, which is cotranscribed with the structural genes, down regulates the mer operon. A frame-shift mutation
in merD, created by deletion of 3 bp and an insertion of a 16 bp sequence upstream of the major inverted repeats present at
the 3' end of the merD sequence, resulted in increased synthesis of the structural gene transcript and higher level of resistance
to Hg2+ by a factor of about 2. MerD protein was over-produced using a T7 expression system. The overproduced protein was
present in the pellet fraction, when cell lysates were centrifuged at a low speed. Approximately 80% pure MerD protein was
recovered from the pellet fraction by extracting with a buffer solution containing 5 M urea. The purified protein migrated
as a 13,500 molecular weight protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the N-terminal amino
acid sequence corresponded to that deduced from the DNA sequence of merD. MerD bound specifically with the mer promoter sequence.
DNase I footprinting experiments identified a common mer operator sequence for MerR and MerD. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(18)55095-X |