Loading…
Using logistic regression to estimate the influence of accident factors on accident severity
Logistic regression was applied to accident-related data collected from traffic police records in order to examine the contribution of several variables to accident severity. A total of 560 subjects involved in serious accidents were sampled. Accident severity (the dependent variable) in this study...
Saved in:
Published in: | Accident analysis and prevention 2002-11, Vol.34 (6), p.729-741 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Logistic regression was applied to accident-related data collected from traffic police records in order to examine the contribution of several variables to accident severity. A total of 560 subjects involved in serious accidents were sampled. Accident severity (the dependent variable) in this study is a dichotomous variable with two categories, fatal and non-fatal. Therefore, each of the subjects sampled was classified as being in either a fatal or non-fatal accident. Because of the binary nature of this dependent variable, a logistic regression approach was found suitable. Of nine independent variables obtained from police accident reports, two were found most significantly associated with accident severity, namely, location and cause of accident. A statistical interpretation is given of the model-developed estimates in terms of the odds ratio concept. The findings show that logistic regression as used in this research is a promising tool in providing meaningful interpretations that can be used for future safety improvements in Riyadh. |
---|---|
ISSN: | 0001-4575 1879-2057 |
DOI: | 10.1016/S0001-4575(01)00073-2 |