Loading…
Orbital angular momentum exchange in the interaction of twisted light with molecules
In the interaction of molecules with light endowed with orbital angular momentum, an exchange of orbital angular momentum in an electric dipole transition occurs only between the light and the center of mass motion; i.e., internal "electronic-type" motion does not participate in any exchan...
Saved in:
Published in: | Physical review letters 2002-09, Vol.89 (14), p.143601-143601, Article 143601 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the interaction of molecules with light endowed with orbital angular momentum, an exchange of orbital angular momentum in an electric dipole transition occurs only between the light and the center of mass motion; i.e., internal "electronic-type" motion does not participate in any exchange of orbital angular momentum in a dipole transition. A quadrupole transition is the lowest electric multipolar process in which an exchange of orbital angular momentum can occur between the light, the internal motion, and the center of mass motion. This rules out experiments seeking to observe exchange of orbital angular momentum between light beams and the internal motion in electric dipole transitions. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.89.143601 |