Loading…
Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber
We report on stimulated Raman scattering in an approximately 1-meter-long hollow-core photonic crystal fiber filled with hydrogen gas under pressure. Light was guided and confined in the 15-micrometer-diameter hollow core by a two-dimensional photonic bandgap. Using a pulsed laser source (pulse dura...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2002-10, Vol.298 (5592), p.399-402 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on stimulated Raman scattering in an approximately 1-meter-long hollow-core photonic crystal fiber filled with hydrogen gas under pressure. Light was guided and confined in the 15-micrometer-diameter hollow core by a two-dimensional photonic bandgap. Using a pulsed laser source (pulse duration, 6 nanoseconds; wavelength, 532 nanometers), the threshold for Stokes (longer wavelength) generation was observed at pulse energies as low as 800 ± 200 nanojoules, followed by a coherent anti-Stokes (shorter wavelength) generation threshold at 3.4 ± 0.7 microjoules. The pump-to-Stokes conversion efficiency was 30 ± 3% at a pulse energy of only 4.5 microjoules. These energies are almost two orders of magnitude lower than any other reported energy, moving gas-based nonlinear optics to previously inaccessible parameter regimes of high intensity and long interaction length. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1076408 |