Loading…

A novel haem compound accumulated in Escherichia coli overexpressing the cydDC operon, encoding an ABC-type transporter required for cytochrome assembly

cydDC genes encode a heterodimeric ABC transporter required for assembly of the membrane-bound cytochrome bd quinol oxidase and periplasmic cytochromes. Here, we demonstrate that overexpression of functional cydDC genes on a multicopy plasmid results in elevated levels of cytochromes b and d, but mo...

Full description

Saved in:
Bibliographic Details
Published in:Archives of microbiology 2002-11, Vol.178 (5), p.358-369
Main Authors: COOK, Gregory M, CRUZ-RAMOS, Hugo, MOIR, Arthur J. G, POOLE, Robert K
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:cydDC genes encode a heterodimeric ABC transporter required for assembly of the membrane-bound cytochrome bd quinol oxidase and periplasmic cytochromes. Here, we demonstrate that overexpression of functional cydDC genes on a multicopy plasmid results in elevated levels of cytochromes b and d, but most notably formation in anaerobically grown cells of a novel haem-containing component P-574. The pigment has a distinctive absorbance at 574-579 nm and 448 nm in reduced minus oxidised spectra and renders over-producing cells reddish in colour. The highest levels of P-574 were observed in mutants (cydAB) in the structural genes for the polypeptides of cytochrome bd. P-574 is labile; its spectral signal is reduced in cells that are frozen-thawed or subjected to mechanical disruption. P-574 was not detected in cytoplasmic or periplasmic fractions and was predominantly associated with the cell membrane. P-574 did not bind CO or cyanide. Production of P-574 was dependent on haem biosynthesis indicating that it is a haem-containing molecule or derived from haem biosynthesis. These findings suggest that P-574 may result from association of a haem compound with overexpressed transporter subunits, but not with oxidase subunits, and are consistent with an intimate link between the transporter and haem processing during oxidase assembly.
ISSN:0302-8933
1432-072X
DOI:10.1007/s00203-002-0467-6