Loading…

Abnormal Accumulation of tTGase Products in Muscle and Erythrocytes of Chorea-Acanthocytosis Patients

Chorea-Acanthocytosis (CHAC) is an autosomal recessive disease characterized by neurodegeneration and acanthocytosis. Enhanced creatine kinase concentration is a constant feature of the condition. The mechanism underlying CHAC is unknown. However, acanthocytosis and enhanced creatine kinase suggest...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuropathology and experimental neurology 2002-10, Vol.61 (10), p.841-848
Main Authors: MELONE, MARIAROSA A.B, DI FEDE, GIUSEPPE, PELUSO, GIANFRANCO, LUS, GIACOMO, DI IORIO, GIUSEPPE, SAMPAOLO, SIMONE, CAPASSO, ANTONIO, GENTILE, VITTORIO, COTRUFO, ROBERTO
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chorea-Acanthocytosis (CHAC) is an autosomal recessive disease characterized by neurodegeneration and acanthocytosis. Enhanced creatine kinase concentration is a constant feature of the condition. The mechanism underlying CHAC is unknown. However, acanthocytosis and enhanced creatine kinase suggest a protein defect that deranges the membrane-cytoskeleton interface in erythrocytes and muscle, thereby resulting in neurodegeneration. Acanthocytes have been correlated with structural and functional changes in membrane protein band 3—a ubiquitous anion transporter. Residue Gln-30 of band 3 serves as a membrane substrate for tissue transglutaminase (tTGase), which belongs to a class of intra- and extra-cellular Ca-dependent cross-linking enzymes found in most vertebrate tissues. In an attempt to cast light on the pathophysiology of CHAC, we used reverse-phase HPLC and immunohistochemistry to evaluate the role of tTGase in this disorder. We found increased amounts of tTGase-derived N-(-γ-glutamyl)lysine isopeptide cross-links in erythrocytes and muscle from CHAC patients. Furthermore, immunohistochemistry demonstrated abnormal accumulation of tTGase products as well as proteinaceous bodies in CHAC muscles. These findings could explain the mechanisms underlying the increased blood levels of creatine kinase and acanthocytosis, which are the most consistent features of this neurodegenerative disease.
ISSN:0022-3069
1554-6578
DOI:10.1093/jnen/61.10.841