Loading…

Aspartic proteases from the nematode Caenorhabditis elegans. Structural organization and developmental and cell-specific expression of asp-1

A Caenorhabditis elegans gene (asp-1) and cDNA that encode a homologue of cathepsin D aspartic protease were cloned and characterized. The asp-1 mRNA is transcribed from a single exon, and it begins with the SL1 trans-splice leader sequence. The protein (ASP-1) is expressed as a 396-amino acid, 42.7...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2000-08, Vol.275 (34), p.26359-26369
Main Authors: Tcherepanova, I, Bhattacharyya, L, Rubin, C S, Freedman, J H
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A Caenorhabditis elegans gene (asp-1) and cDNA that encode a homologue of cathepsin D aspartic protease were cloned and characterized. The asp-1 mRNA is transcribed from a single exon, and it begins with the SL1 trans-splice leader sequence. The protein (ASP-1) is expressed as a 396-amino acid, 42.7-kDa pre-pro-peptide that is post-translationally processed into a approximately 40-kDa lysosomal protein. ASP-1 shares approximately 60% sequence identity with the aspartic protease precursor from the nematode Strongyloides stercoralis. The amino acid sequences adjacent to the two active site aspartic acid residues in ASP-1 are 100% identical to those in other eukaryotic aspartic proteases. In addition, ASP-1 contains conserved, potential disulfide bond-forming cysteine residues and N-glycosylation sites. The asp-1 gene is exclusively transcribed in the intestinal cells, with the highest levels of expression observed at late embryonic and early larval stages of development. asp-1 transcription is not observed in adult nematodes or mature larvae. Furthermore, transcription predominantly occurs in eight anterior cells of the intestine (int6-int8). Analyses of ASP-1 nucleotide and amino acid sequences revealed the presence of five additional C. elegans aspartic proteases.
ISSN:0021-9258
DOI:10.1074/jbc.M000956200