Loading…

Role of Barrington’s nucleus in the activation of rat locus coeruleus neurons by colonic distension

The locus coeruleus (LC)–noradrenergic system, which has been implicated in arousal and attention, is activated by visceral stimuli such as colon and bladder distension. Neurons of Barrington’s nucleus (the pontine micturition center) have been identified which project to both the LC and preganglion...

Full description

Saved in:
Bibliographic Details
Published in:Brain research 2001-11, Vol.917 (2), p.206-218
Main Authors: Rouzade-Dominguez, Marie-Laure, Curtis, Andre L, Valentino, Rita J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The locus coeruleus (LC)–noradrenergic system, which has been implicated in arousal and attention, is activated by visceral stimuli such as colon and bladder distension. Neurons of Barrington’s nucleus (the pontine micturition center) have been identified which project to both the LC and preganglionic column of the lumbosacral spinal cord. Thus, Barrington’s nucleus is positioned to coordinate brain noradrenergic activity with pelvic visceral functions. The aim of this study was to determine whether LC activation by colonic distension was mediated by projections from Barrington’s nucleus to the LC in the rat. Lesions of Barrington’s nucleus were performed unilaterally by local injection of ibotenic acid (10 μg/μl, 90 nl) 10 days prior to recording: (i) ipsilateral spontaneous LC discharge rate; (ii) LC responses to colonic distension; and (iii) LC responses to sciatic nerve stimulation. In some rats LC activation by hypotensive challenge was also examined. Lesions of Barrington’s nucleus significantly reduced LC activation by colon distension from a magnitude of 26.6±6% increase in discharge rate ( n=8) to 6.9±3% ( n=6), while having no effect on basal LC discharge rate. In contrast, LC responses to sciatic nerve stimulation were not altered in rats with lesions of Barrington’s nucleus and LC neurons were still activated by hypotensive challenge. These results support the hypothesis that Barrington’s nucleus selectively relays input from pelvic visceral afferents to the LC. This may serve as a limb in a circuit designed to coordinate central and peripheral responses to pelvic visceral stimuli.
ISSN:0006-8993
1872-6240
DOI:10.1016/S0006-8993(01)02917-1