Loading…

Modeling of inducer exclusion and catabolite repression based on a PTS-dependent sucrose and non-PTS-dependent glycerol transport systems in Escherichia coli K-12 and its experimental verification

We used genetically engineered sucrose positive Escherichia coli K-12 derivatives as a model system for the modeling and experimental verification of regulatory processes in bacteria. These cells take up and metabolize sucrose by the phospho enolpyruvate (PEP)-dependent sucrose phosphotransferase sy...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biotechnology 2001-12, Vol.92 (2), p.133-158
Main Authors: Wang, J., Gilles, E.D., Lengeler, J.W., Jahreis, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-6c66277af1f773810732a2f511f5c11c65ba7ab3df93e4c79028003efcf70b63
cites cdi_FETCH-LOGICAL-c344t-6c66277af1f773810732a2f511f5c11c65ba7ab3df93e4c79028003efcf70b63
container_end_page 158
container_issue 2
container_start_page 133
container_title Journal of biotechnology
container_volume 92
creator Wang, J.
Gilles, E.D.
Lengeler, J.W.
Jahreis, K.
description We used genetically engineered sucrose positive Escherichia coli K-12 derivatives as a model system for the modeling and experimental verification of regulatory processes in bacteria. These cells take up and metabolize sucrose by the phospho enolpyruvate (PEP)-dependent sucrose phosphotransferase system (Scr-PTS). Expression of the scr genes, which cluster in two different operons ( scrYAB and scrK), is negatively controlled by the ScrR repressor. Additionally, expression of the scrYAB operon, but not of the scrK operon is positively controlled by the cAMP–CRP complex. Modeling of sucrose transport and metabolism through the Scr-system and of the scr gene expression has been performed using a modular and object-orientated new approach. To verify the model and identify important model parameters we measured in a first set of experiments induction kinetics of the scr genes after growth on glycerol using strains with single copy lacZ operon fusions in the scrK or scrY genes, respectively. In a second set of experiments an additional copy of the complete scr-regulon was integrated into the chromosome to construct diplogenotic strains. Differences were observed in the induction kinetics of the cAMP–CRP-dependent scrY operon compared to the cAMP–CRP independent scrK operon as well as between the single copy and the corresponding diplogenotic strains.
doi_str_mv 10.1016/S0168-1656(01)00354-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72216675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168165601003546</els_id><sourcerecordid>18356287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-6c66277af1f773810732a2f511f5c11c65ba7ab3df93e4c79028003efcf70b63</originalsourceid><addsrcrecordid>eNqFUc1u1DAQthCILguPAPIJwSHgiRM7e0KoagFRBFL3bjn2uDXK2sFOqu778WB4sysQp15sS_P9eT5CXgJ7BwzE--tydBWIVrxh8JYx3jaVeERW0EleNZ3gj8nqL-SMPMv5J2Os2bTwlJwBiIZtumZFfn-LFgcfbmh01Ac7G0wU780wZx8D1cFSoyfdx8FPSBOOCfMy6XVGSw8Q-mN7XVkcMVgME82zSTHjQg0xVP9Pb4Z9cYgDnZIOeYypEPZ5wl0u7vQim1tM3tx6TU2xpF8rqBclP-USayzDXZHRA70rT-dLthLmOXni9JDxxelek-3lxfb8c3X1_dOX849XleFNM1XCCFFLqR04KXkHTPJa164FcK0BMKLttdQ9t27DsTFyw-quLBadcZL1gq_J66PsmOKvGfOkdj4bHAYdMM5ZyboGIWT7IBA63oq6FLUm7RF4WFlO6NRYPqjTXgFTh5rVUrM6dKgYqKVmdUjy6mQw9zu0_1inXgvgwxGAZR13HpPKxmMwaH1CMykb_QMWfwDc1bs2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18356287</pqid></control><display><type>article</type><title>Modeling of inducer exclusion and catabolite repression based on a PTS-dependent sucrose and non-PTS-dependent glycerol transport systems in Escherichia coli K-12 and its experimental verification</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Wang, J. ; Gilles, E.D. ; Lengeler, J.W. ; Jahreis, K.</creator><creatorcontrib>Wang, J. ; Gilles, E.D. ; Lengeler, J.W. ; Jahreis, K.</creatorcontrib><description>We used genetically engineered sucrose positive Escherichia coli K-12 derivatives as a model system for the modeling and experimental verification of regulatory processes in bacteria. These cells take up and metabolize sucrose by the phospho enolpyruvate (PEP)-dependent sucrose phosphotransferase system (Scr-PTS). Expression of the scr genes, which cluster in two different operons ( scrYAB and scrK), is negatively controlled by the ScrR repressor. Additionally, expression of the scrYAB operon, but not of the scrK operon is positively controlled by the cAMP–CRP complex. Modeling of sucrose transport and metabolism through the Scr-system and of the scr gene expression has been performed using a modular and object-orientated new approach. To verify the model and identify important model parameters we measured in a first set of experiments induction kinetics of the scr genes after growth on glycerol using strains with single copy lacZ operon fusions in the scrK or scrY genes, respectively. In a second set of experiments an additional copy of the complete scr-regulon was integrated into the chromosome to construct diplogenotic strains. Differences were observed in the induction kinetics of the cAMP–CRP-dependent scrY operon compared to the cAMP–CRP independent scrK operon as well as between the single copy and the corresponding diplogenotic strains.</description><identifier>ISSN: 0168-1656</identifier><identifier>EISSN: 1873-4863</identifier><identifier>DOI: 10.1016/S0168-1656(01)00354-6</identifier><identifier>PMID: 11640984</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biological Transport, Active ; Biotechnology ; Catabolite repression ; Cyclic AMP - metabolism ; Cyclic AMP Receptor Protein - metabolism ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Genes, Bacterial ; Genetic Engineering ; Glycerol - metabolism ; Inducer exclusion ; Kinetics ; Lac Operon ; Modeling ; Models, Biological ; Multigene Family ; Phosphoenolpyruvate Sugar Phosphotransferase System - genetics ; Phosphoenolpyruvate Sugar Phosphotransferase System - metabolism ; PTS ; Regulon ; scr gene ; scrK gene ; scrY gene ; Simulation ; Sucrose - metabolism ; sucrose phosphotransferase</subject><ispartof>Journal of biotechnology, 2001-12, Vol.92 (2), p.133-158</ispartof><rights>2001 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-6c66277af1f773810732a2f511f5c11c65ba7ab3df93e4c79028003efcf70b63</citedby><cites>FETCH-LOGICAL-c344t-6c66277af1f773810732a2f511f5c11c65ba7ab3df93e4c79028003efcf70b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11640984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, J.</creatorcontrib><creatorcontrib>Gilles, E.D.</creatorcontrib><creatorcontrib>Lengeler, J.W.</creatorcontrib><creatorcontrib>Jahreis, K.</creatorcontrib><title>Modeling of inducer exclusion and catabolite repression based on a PTS-dependent sucrose and non-PTS-dependent glycerol transport systems in Escherichia coli K-12 and its experimental verification</title><title>Journal of biotechnology</title><addtitle>J Biotechnol</addtitle><description>We used genetically engineered sucrose positive Escherichia coli K-12 derivatives as a model system for the modeling and experimental verification of regulatory processes in bacteria. These cells take up and metabolize sucrose by the phospho enolpyruvate (PEP)-dependent sucrose phosphotransferase system (Scr-PTS). Expression of the scr genes, which cluster in two different operons ( scrYAB and scrK), is negatively controlled by the ScrR repressor. Additionally, expression of the scrYAB operon, but not of the scrK operon is positively controlled by the cAMP–CRP complex. Modeling of sucrose transport and metabolism through the Scr-system and of the scr gene expression has been performed using a modular and object-orientated new approach. To verify the model and identify important model parameters we measured in a first set of experiments induction kinetics of the scr genes after growth on glycerol using strains with single copy lacZ operon fusions in the scrK or scrY genes, respectively. In a second set of experiments an additional copy of the complete scr-regulon was integrated into the chromosome to construct diplogenotic strains. Differences were observed in the induction kinetics of the cAMP–CRP-dependent scrY operon compared to the cAMP–CRP independent scrK operon as well as between the single copy and the corresponding diplogenotic strains.</description><subject>Biological Transport, Active</subject><subject>Biotechnology</subject><subject>Catabolite repression</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic AMP Receptor Protein - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Genes, Bacterial</subject><subject>Genetic Engineering</subject><subject>Glycerol - metabolism</subject><subject>Inducer exclusion</subject><subject>Kinetics</subject><subject>Lac Operon</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Multigene Family</subject><subject>Phosphoenolpyruvate Sugar Phosphotransferase System - genetics</subject><subject>Phosphoenolpyruvate Sugar Phosphotransferase System - metabolism</subject><subject>PTS</subject><subject>Regulon</subject><subject>scr gene</subject><subject>scrK gene</subject><subject>scrY gene</subject><subject>Simulation</subject><subject>Sucrose - metabolism</subject><subject>sucrose phosphotransferase</subject><issn>0168-1656</issn><issn>1873-4863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFUc1u1DAQthCILguPAPIJwSHgiRM7e0KoagFRBFL3bjn2uDXK2sFOqu778WB4sysQp15sS_P9eT5CXgJ7BwzE--tydBWIVrxh8JYx3jaVeERW0EleNZ3gj8nqL-SMPMv5J2Os2bTwlJwBiIZtumZFfn-LFgcfbmh01Ac7G0wU780wZx8D1cFSoyfdx8FPSBOOCfMy6XVGSw8Q-mN7XVkcMVgME82zSTHjQg0xVP9Pb4Z9cYgDnZIOeYypEPZ5wl0u7vQim1tM3tx6TU2xpF8rqBclP-USayzDXZHRA70rT-dLthLmOXni9JDxxelek-3lxfb8c3X1_dOX849XleFNM1XCCFFLqR04KXkHTPJa164FcK0BMKLttdQ9t27DsTFyw-quLBadcZL1gq_J66PsmOKvGfOkdj4bHAYdMM5ZyboGIWT7IBA63oq6FLUm7RF4WFlO6NRYPqjTXgFTh5rVUrM6dKgYqKVmdUjy6mQw9zu0_1inXgvgwxGAZR13HpPKxmMwaH1CMykb_QMWfwDc1bs2</recordid><startdate>20011228</startdate><enddate>20011228</enddate><creator>Wang, J.</creator><creator>Gilles, E.D.</creator><creator>Lengeler, J.W.</creator><creator>Jahreis, K.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20011228</creationdate><title>Modeling of inducer exclusion and catabolite repression based on a PTS-dependent sucrose and non-PTS-dependent glycerol transport systems in Escherichia coli K-12 and its experimental verification</title><author>Wang, J. ; Gilles, E.D. ; Lengeler, J.W. ; Jahreis, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-6c66277af1f773810732a2f511f5c11c65ba7ab3df93e4c79028003efcf70b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Biological Transport, Active</topic><topic>Biotechnology</topic><topic>Catabolite repression</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic AMP Receptor Protein - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Genes, Bacterial</topic><topic>Genetic Engineering</topic><topic>Glycerol - metabolism</topic><topic>Inducer exclusion</topic><topic>Kinetics</topic><topic>Lac Operon</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Multigene Family</topic><topic>Phosphoenolpyruvate Sugar Phosphotransferase System - genetics</topic><topic>Phosphoenolpyruvate Sugar Phosphotransferase System - metabolism</topic><topic>PTS</topic><topic>Regulon</topic><topic>scr gene</topic><topic>scrK gene</topic><topic>scrY gene</topic><topic>Simulation</topic><topic>Sucrose - metabolism</topic><topic>sucrose phosphotransferase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, J.</creatorcontrib><creatorcontrib>Gilles, E.D.</creatorcontrib><creatorcontrib>Lengeler, J.W.</creatorcontrib><creatorcontrib>Jahreis, K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, J.</au><au>Gilles, E.D.</au><au>Lengeler, J.W.</au><au>Jahreis, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of inducer exclusion and catabolite repression based on a PTS-dependent sucrose and non-PTS-dependent glycerol transport systems in Escherichia coli K-12 and its experimental verification</atitle><jtitle>Journal of biotechnology</jtitle><addtitle>J Biotechnol</addtitle><date>2001-12-28</date><risdate>2001</risdate><volume>92</volume><issue>2</issue><spage>133</spage><epage>158</epage><pages>133-158</pages><issn>0168-1656</issn><eissn>1873-4863</eissn><abstract>We used genetically engineered sucrose positive Escherichia coli K-12 derivatives as a model system for the modeling and experimental verification of regulatory processes in bacteria. These cells take up and metabolize sucrose by the phospho enolpyruvate (PEP)-dependent sucrose phosphotransferase system (Scr-PTS). Expression of the scr genes, which cluster in two different operons ( scrYAB and scrK), is negatively controlled by the ScrR repressor. Additionally, expression of the scrYAB operon, but not of the scrK operon is positively controlled by the cAMP–CRP complex. Modeling of sucrose transport and metabolism through the Scr-system and of the scr gene expression has been performed using a modular and object-orientated new approach. To verify the model and identify important model parameters we measured in a first set of experiments induction kinetics of the scr genes after growth on glycerol using strains with single copy lacZ operon fusions in the scrK or scrY genes, respectively. In a second set of experiments an additional copy of the complete scr-regulon was integrated into the chromosome to construct diplogenotic strains. Differences were observed in the induction kinetics of the cAMP–CRP-dependent scrY operon compared to the cAMP–CRP independent scrK operon as well as between the single copy and the corresponding diplogenotic strains.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>11640984</pmid><doi>10.1016/S0168-1656(01)00354-6</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-1656
ispartof Journal of biotechnology, 2001-12, Vol.92 (2), p.133-158
issn 0168-1656
1873-4863
language eng
recordid cdi_proquest_miscellaneous_72216675
source ScienceDirect Freedom Collection 2022-2024
subjects Biological Transport, Active
Biotechnology
Catabolite repression
Cyclic AMP - metabolism
Cyclic AMP Receptor Protein - metabolism
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Genes, Bacterial
Genetic Engineering
Glycerol - metabolism
Inducer exclusion
Kinetics
Lac Operon
Modeling
Models, Biological
Multigene Family
Phosphoenolpyruvate Sugar Phosphotransferase System - genetics
Phosphoenolpyruvate Sugar Phosphotransferase System - metabolism
PTS
Regulon
scr gene
scrK gene
scrY gene
Simulation
Sucrose - metabolism
sucrose phosphotransferase
title Modeling of inducer exclusion and catabolite repression based on a PTS-dependent sucrose and non-PTS-dependent glycerol transport systems in Escherichia coli K-12 and its experimental verification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20inducer%20exclusion%20and%20catabolite%20repression%20based%20on%20a%20PTS-dependent%20sucrose%20and%20non-PTS-dependent%20glycerol%20transport%20systems%20in%20Escherichia%20coli%20K-12%20and%20its%20experimental%20verification&rft.jtitle=Journal%20of%20biotechnology&rft.au=Wang,%20J.&rft.date=2001-12-28&rft.volume=92&rft.issue=2&rft.spage=133&rft.epage=158&rft.pages=133-158&rft.issn=0168-1656&rft.eissn=1873-4863&rft_id=info:doi/10.1016/S0168-1656(01)00354-6&rft_dat=%3Cproquest_cross%3E18356287%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-6c66277af1f773810732a2f511f5c11c65ba7ab3df93e4c79028003efcf70b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18356287&rft_id=info:pmid/11640984&rfr_iscdi=true