Loading…

Steady-State and Pre-Steady-State Kinetic Analysis of Mycobacterium tuberculosis Pantothenate Synthetase

Pantothenate synthetase (EC 6.3.2.1), encoded by the panC gene, catalyzes the essential ATP-dependent condensation of D-pantoate and β-alanine to form pantothenate in bacteria, yeast and plants. Pantothenate synthetase from Mycobacterium tuberculosis was expressed in E. coli, purified to homogeneity...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2001-10, Vol.40 (43), p.12904-12912
Main Authors: Zheng, Renjian, Blanchard, John S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pantothenate synthetase (EC 6.3.2.1), encoded by the panC gene, catalyzes the essential ATP-dependent condensation of D-pantoate and β-alanine to form pantothenate in bacteria, yeast and plants. Pantothenate synthetase from Mycobacterium tuberculosis was expressed in E. coli, purified to homogeneity, and found to be a homodimer with a subunit molecular mass of 33 kDa. Initial velocity, product, and dead-end inhibition studies showed the kinetic mechanism of pantothenate synthetase to be Bi Uni Uni Bi Ping Pong, with ATP binding followed by d-pantoate binding, release of PPi, binding of β-alanine, followed by the release of pantothenate and AMP. Michaelis constants were 0.13, 0.8, and 2.6 mM for d-pantoate, β-alanine, and ATP, respectively, and the turnover number, k cat, was 3.4 s-1. The formation of pantoyl adenylate, suggested as a key intermediate by the kinetic mechanism, was confirmed by 31P NMR spectroscopy of [18O]AMP produced from 18O transfer using [carboxyl-18O]pantoate. Single-turnover reactions for the formation of pyrophosphate and pantothenate were determined using rapid quench techniques, and indicated that the two half-reactions occurred with maximum rates of 1.3 ± 0.3 and 2.6 ± 0.3 s-1, respectively, consistent with pantoyl adenylate being a kinetically competent intermediate in the pantothenate synthetase reaction. These data also suggest that both half-reactions are partially rate-limiting. Reverse isotope exchange of [14C]-β-alanine into pantothenate in the presence of AMP was observed, indicating the reversible formation of the pantoyl adenylate intermediate from products.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi011522+