Loading…

Trajectory estimation from place cell data

We consider the problem of propagating the conditional probability density associated with the movement parameters (position, heading, velocity, etc.) of an animal, given the responses of an ensemble of place cells. While we are not the first to look at this question, ours seems to be the first trea...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks 2001-07, Vol.14 (6), p.835-844
Main Authors: Twum-Danso, Nanayaa, Brockett, Roger
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-40a2fd67fe163e0e0390bd257d4e47de8700453c9072bd1ffab356337b26ced73
cites cdi_FETCH-LOGICAL-c390t-40a2fd67fe163e0e0390bd257d4e47de8700453c9072bd1ffab356337b26ced73
container_end_page 844
container_issue 6
container_start_page 835
container_title Neural networks
container_volume 14
creator Twum-Danso, Nanayaa
Brockett, Roger
description We consider the problem of propagating the conditional probability density associated with the movement parameters (position, heading, velocity, etc.) of an animal, given the responses of an ensemble of place cells. While we are not the first to look at this question, ours seems to be the first treatment that incorporates a general Markov process model for the motion parameters and a general observation model postulating place cells centered in a lower dimensional ‘measurement space’ formed from combinations of the Markovian variables. An important part of our analysis involves the determination of a suitable set of sufficient statistics for propagating the conditional density in this context. Making use of these results we are led to approximations which greatly simplify the estimation problem and various aspects of its neuroscientific interpretation.
doi_str_mv 10.1016/S0893-6080(01)00079-X
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72218920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089360800100079X</els_id><sourcerecordid>72218920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-40a2fd67fe163e0e0390bd257d4e47de8700453c9072bd1ffab356337b26ced73</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlZ_grInUWF1kuwmu6cixS8oeLBCbyGbTGDLbrcmW6H_3vQDPXrKEJ6Zeech5JLCPQUqHj6gKHkqoIAboLcAIMt0fkSGtIgFkwU7JsNfZEDOQlhESBQZPyUDSoXIpcyH5G7m9QJN3_lNgqGvW93X3TJxvmuTVaMNJgabJrG61-fkxOkm4MXhHZHP56fZ5DWdvr-8TR6nqeEl9GkGmjkrpEMqOAJC_K0sy6XNMJMWCwmQ5dyUIFllqXO64rngXFZMGLSSj8j1fu7Kd1_rGEq1ddim0Evs1kFJxmhRMohgvgeN70Lw6NTKxwP8RlFQW0lqJ0ltDSigaidJzWPf1WHBumrR_nUdrERgvAcwnvldo1fB1LiM6WofXSnb1f-s-AHF_nWn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72218920</pqid></control><display><type>article</type><title>Trajectory estimation from place cell data</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Twum-Danso, Nanayaa ; Brockett, Roger</creator><creatorcontrib>Twum-Danso, Nanayaa ; Brockett, Roger</creatorcontrib><description>We consider the problem of propagating the conditional probability density associated with the movement parameters (position, heading, velocity, etc.) of an animal, given the responses of an ensemble of place cells. While we are not the first to look at this question, ours seems to be the first treatment that incorporates a general Markov process model for the motion parameters and a general observation model postulating place cells centered in a lower dimensional ‘measurement space’ formed from combinations of the Markovian variables. An important part of our analysis involves the determination of a suitable set of sufficient statistics for propagating the conditional density in this context. Making use of these results we are led to approximations which greatly simplify the estimation problem and various aspects of its neuroscientific interpretation.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(01)00079-X</identifier><identifier>PMID: 11665775</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Action Potentials - physiology ; Animals ; Conditional density ; Hippocampus - physiology ; Humans ; Markov Chains ; Measurement model ; Models, Neurological ; Movement - physiology ; Neurons - physiology ; Orientation - physiology ; Place cells ; Poisson processes ; Position estimation ; Space Perception - physiology</subject><ispartof>Neural networks, 2001-07, Vol.14 (6), p.835-844</ispartof><rights>2001 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-40a2fd67fe163e0e0390bd257d4e47de8700453c9072bd1ffab356337b26ced73</citedby><cites>FETCH-LOGICAL-c390t-40a2fd67fe163e0e0390bd257d4e47de8700453c9072bd1ffab356337b26ced73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11665775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Twum-Danso, Nanayaa</creatorcontrib><creatorcontrib>Brockett, Roger</creatorcontrib><title>Trajectory estimation from place cell data</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>We consider the problem of propagating the conditional probability density associated with the movement parameters (position, heading, velocity, etc.) of an animal, given the responses of an ensemble of place cells. While we are not the first to look at this question, ours seems to be the first treatment that incorporates a general Markov process model for the motion parameters and a general observation model postulating place cells centered in a lower dimensional ‘measurement space’ formed from combinations of the Markovian variables. An important part of our analysis involves the determination of a suitable set of sufficient statistics for propagating the conditional density in this context. Making use of these results we are led to approximations which greatly simplify the estimation problem and various aspects of its neuroscientific interpretation.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Conditional density</subject><subject>Hippocampus - physiology</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>Measurement model</subject><subject>Models, Neurological</subject><subject>Movement - physiology</subject><subject>Neurons - physiology</subject><subject>Orientation - physiology</subject><subject>Place cells</subject><subject>Poisson processes</subject><subject>Position estimation</subject><subject>Space Perception - physiology</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMotlZ_grInUWF1kuwmu6cixS8oeLBCbyGbTGDLbrcmW6H_3vQDPXrKEJ6Zeech5JLCPQUqHj6gKHkqoIAboLcAIMt0fkSGtIgFkwU7JsNfZEDOQlhESBQZPyUDSoXIpcyH5G7m9QJN3_lNgqGvW93X3TJxvmuTVaMNJgabJrG61-fkxOkm4MXhHZHP56fZ5DWdvr-8TR6nqeEl9GkGmjkrpEMqOAJC_K0sy6XNMJMWCwmQ5dyUIFllqXO64rngXFZMGLSSj8j1fu7Kd1_rGEq1ddim0Evs1kFJxmhRMohgvgeN70Lw6NTKxwP8RlFQW0lqJ0ltDSigaidJzWPf1WHBumrR_nUdrERgvAcwnvldo1fB1LiM6WofXSnb1f-s-AHF_nWn</recordid><startdate>20010701</startdate><enddate>20010701</enddate><creator>Twum-Danso, Nanayaa</creator><creator>Brockett, Roger</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010701</creationdate><title>Trajectory estimation from place cell data</title><author>Twum-Danso, Nanayaa ; Brockett, Roger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-40a2fd67fe163e0e0390bd257d4e47de8700453c9072bd1ffab356337b26ced73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Conditional density</topic><topic>Hippocampus - physiology</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>Measurement model</topic><topic>Models, Neurological</topic><topic>Movement - physiology</topic><topic>Neurons - physiology</topic><topic>Orientation - physiology</topic><topic>Place cells</topic><topic>Poisson processes</topic><topic>Position estimation</topic><topic>Space Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Twum-Danso, Nanayaa</creatorcontrib><creatorcontrib>Brockett, Roger</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Twum-Danso, Nanayaa</au><au>Brockett, Roger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory estimation from place cell data</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2001-07-01</date><risdate>2001</risdate><volume>14</volume><issue>6</issue><spage>835</spage><epage>844</epage><pages>835-844</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>We consider the problem of propagating the conditional probability density associated with the movement parameters (position, heading, velocity, etc.) of an animal, given the responses of an ensemble of place cells. While we are not the first to look at this question, ours seems to be the first treatment that incorporates a general Markov process model for the motion parameters and a general observation model postulating place cells centered in a lower dimensional ‘measurement space’ formed from combinations of the Markovian variables. An important part of our analysis involves the determination of a suitable set of sufficient statistics for propagating the conditional density in this context. Making use of these results we are led to approximations which greatly simplify the estimation problem and various aspects of its neuroscientific interpretation.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>11665775</pmid><doi>10.1016/S0893-6080(01)00079-X</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2001-07, Vol.14 (6), p.835-844
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_72218920
source ScienceDirect Freedom Collection 2022-2024
subjects Action Potentials - physiology
Animals
Conditional density
Hippocampus - physiology
Humans
Markov Chains
Measurement model
Models, Neurological
Movement - physiology
Neurons - physiology
Orientation - physiology
Place cells
Poisson processes
Position estimation
Space Perception - physiology
title Trajectory estimation from place cell data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20estimation%20from%20place%20cell%20data&rft.jtitle=Neural%20networks&rft.au=Twum-Danso,%20Nanayaa&rft.date=2001-07-01&rft.volume=14&rft.issue=6&rft.spage=835&rft.epage=844&rft.pages=835-844&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(01)00079-X&rft_dat=%3Cproquest_cross%3E72218920%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-40a2fd67fe163e0e0390bd257d4e47de8700453c9072bd1ffab356337b26ced73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72218920&rft_id=info:pmid/11665775&rfr_iscdi=true