Loading…
Trajectory estimation from place cell data
We consider the problem of propagating the conditional probability density associated with the movement parameters (position, heading, velocity, etc.) of an animal, given the responses of an ensemble of place cells. While we are not the first to look at this question, ours seems to be the first trea...
Saved in:
Published in: | Neural networks 2001-07, Vol.14 (6), p.835-844 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-40a2fd67fe163e0e0390bd257d4e47de8700453c9072bd1ffab356337b26ced73 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-40a2fd67fe163e0e0390bd257d4e47de8700453c9072bd1ffab356337b26ced73 |
container_end_page | 844 |
container_issue | 6 |
container_start_page | 835 |
container_title | Neural networks |
container_volume | 14 |
creator | Twum-Danso, Nanayaa Brockett, Roger |
description | We consider the problem of propagating the conditional probability density associated with the movement parameters (position, heading, velocity, etc.) of an animal, given the responses of an ensemble of place cells. While we are not the first to look at this question, ours seems to be the first treatment that incorporates a general Markov process model for the motion parameters and a general observation model postulating place cells centered in a lower dimensional ‘measurement space’ formed from combinations of the Markovian variables. An important part of our analysis involves the determination of a suitable set of sufficient statistics for propagating the conditional density in this context. Making use of these results we are led to approximations which greatly simplify the estimation problem and various aspects of its neuroscientific interpretation. |
doi_str_mv | 10.1016/S0893-6080(01)00079-X |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72218920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089360800100079X</els_id><sourcerecordid>72218920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-40a2fd67fe163e0e0390bd257d4e47de8700453c9072bd1ffab356337b26ced73</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlZ_grInUWF1kuwmu6cixS8oeLBCbyGbTGDLbrcmW6H_3vQDPXrKEJ6Zeech5JLCPQUqHj6gKHkqoIAboLcAIMt0fkSGtIgFkwU7JsNfZEDOQlhESBQZPyUDSoXIpcyH5G7m9QJN3_lNgqGvW93X3TJxvmuTVaMNJgabJrG61-fkxOkm4MXhHZHP56fZ5DWdvr-8TR6nqeEl9GkGmjkrpEMqOAJC_K0sy6XNMJMWCwmQ5dyUIFllqXO64rngXFZMGLSSj8j1fu7Kd1_rGEq1ddim0Evs1kFJxmhRMohgvgeN70Lw6NTKxwP8RlFQW0lqJ0ltDSigaidJzWPf1WHBumrR_nUdrERgvAcwnvldo1fB1LiM6WofXSnb1f-s-AHF_nWn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72218920</pqid></control><display><type>article</type><title>Trajectory estimation from place cell data</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Twum-Danso, Nanayaa ; Brockett, Roger</creator><creatorcontrib>Twum-Danso, Nanayaa ; Brockett, Roger</creatorcontrib><description>We consider the problem of propagating the conditional probability density associated with the movement parameters (position, heading, velocity, etc.) of an animal, given the responses of an ensemble of place cells. While we are not the first to look at this question, ours seems to be the first treatment that incorporates a general Markov process model for the motion parameters and a general observation model postulating place cells centered in a lower dimensional ‘measurement space’ formed from combinations of the Markovian variables. An important part of our analysis involves the determination of a suitable set of sufficient statistics for propagating the conditional density in this context. Making use of these results we are led to approximations which greatly simplify the estimation problem and various aspects of its neuroscientific interpretation.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(01)00079-X</identifier><identifier>PMID: 11665775</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Action Potentials - physiology ; Animals ; Conditional density ; Hippocampus - physiology ; Humans ; Markov Chains ; Measurement model ; Models, Neurological ; Movement - physiology ; Neurons - physiology ; Orientation - physiology ; Place cells ; Poisson processes ; Position estimation ; Space Perception - physiology</subject><ispartof>Neural networks, 2001-07, Vol.14 (6), p.835-844</ispartof><rights>2001 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-40a2fd67fe163e0e0390bd257d4e47de8700453c9072bd1ffab356337b26ced73</citedby><cites>FETCH-LOGICAL-c390t-40a2fd67fe163e0e0390bd257d4e47de8700453c9072bd1ffab356337b26ced73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11665775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Twum-Danso, Nanayaa</creatorcontrib><creatorcontrib>Brockett, Roger</creatorcontrib><title>Trajectory estimation from place cell data</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>We consider the problem of propagating the conditional probability density associated with the movement parameters (position, heading, velocity, etc.) of an animal, given the responses of an ensemble of place cells. While we are not the first to look at this question, ours seems to be the first treatment that incorporates a general Markov process model for the motion parameters and a general observation model postulating place cells centered in a lower dimensional ‘measurement space’ formed from combinations of the Markovian variables. An important part of our analysis involves the determination of a suitable set of sufficient statistics for propagating the conditional density in this context. Making use of these results we are led to approximations which greatly simplify the estimation problem and various aspects of its neuroscientific interpretation.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Conditional density</subject><subject>Hippocampus - physiology</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>Measurement model</subject><subject>Models, Neurological</subject><subject>Movement - physiology</subject><subject>Neurons - physiology</subject><subject>Orientation - physiology</subject><subject>Place cells</subject><subject>Poisson processes</subject><subject>Position estimation</subject><subject>Space Perception - physiology</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMotlZ_grInUWF1kuwmu6cixS8oeLBCbyGbTGDLbrcmW6H_3vQDPXrKEJ6Zeech5JLCPQUqHj6gKHkqoIAboLcAIMt0fkSGtIgFkwU7JsNfZEDOQlhESBQZPyUDSoXIpcyH5G7m9QJN3_lNgqGvW93X3TJxvmuTVaMNJgabJrG61-fkxOkm4MXhHZHP56fZ5DWdvr-8TR6nqeEl9GkGmjkrpEMqOAJC_K0sy6XNMJMWCwmQ5dyUIFllqXO64rngXFZMGLSSj8j1fu7Kd1_rGEq1ddim0Evs1kFJxmhRMohgvgeN70Lw6NTKxwP8RlFQW0lqJ0ltDSigaidJzWPf1WHBumrR_nUdrERgvAcwnvldo1fB1LiM6WofXSnb1f-s-AHF_nWn</recordid><startdate>20010701</startdate><enddate>20010701</enddate><creator>Twum-Danso, Nanayaa</creator><creator>Brockett, Roger</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010701</creationdate><title>Trajectory estimation from place cell data</title><author>Twum-Danso, Nanayaa ; Brockett, Roger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-40a2fd67fe163e0e0390bd257d4e47de8700453c9072bd1ffab356337b26ced73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Conditional density</topic><topic>Hippocampus - physiology</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>Measurement model</topic><topic>Models, Neurological</topic><topic>Movement - physiology</topic><topic>Neurons - physiology</topic><topic>Orientation - physiology</topic><topic>Place cells</topic><topic>Poisson processes</topic><topic>Position estimation</topic><topic>Space Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Twum-Danso, Nanayaa</creatorcontrib><creatorcontrib>Brockett, Roger</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Twum-Danso, Nanayaa</au><au>Brockett, Roger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory estimation from place cell data</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2001-07-01</date><risdate>2001</risdate><volume>14</volume><issue>6</issue><spage>835</spage><epage>844</epage><pages>835-844</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>We consider the problem of propagating the conditional probability density associated with the movement parameters (position, heading, velocity, etc.) of an animal, given the responses of an ensemble of place cells. While we are not the first to look at this question, ours seems to be the first treatment that incorporates a general Markov process model for the motion parameters and a general observation model postulating place cells centered in a lower dimensional ‘measurement space’ formed from combinations of the Markovian variables. An important part of our analysis involves the determination of a suitable set of sufficient statistics for propagating the conditional density in this context. Making use of these results we are led to approximations which greatly simplify the estimation problem and various aspects of its neuroscientific interpretation.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>11665775</pmid><doi>10.1016/S0893-6080(01)00079-X</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2001-07, Vol.14 (6), p.835-844 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_72218920 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Action Potentials - physiology Animals Conditional density Hippocampus - physiology Humans Markov Chains Measurement model Models, Neurological Movement - physiology Neurons - physiology Orientation - physiology Place cells Poisson processes Position estimation Space Perception - physiology |
title | Trajectory estimation from place cell data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20estimation%20from%20place%20cell%20data&rft.jtitle=Neural%20networks&rft.au=Twum-Danso,%20Nanayaa&rft.date=2001-07-01&rft.volume=14&rft.issue=6&rft.spage=835&rft.epage=844&rft.pages=835-844&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(01)00079-X&rft_dat=%3Cproquest_cross%3E72218920%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-40a2fd67fe163e0e0390bd257d4e47de8700453c9072bd1ffab356337b26ced73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72218920&rft_id=info:pmid/11665775&rfr_iscdi=true |