Loading…
Human THP-1 monocytic leukemic cells induced to undergo monocytic differentiation by bryostatin 1 are refractory to proteasome inhibitor-induced apoptosis
The ubiquitin-proteasome pathway is the principal mechanism for the degradation of short-lived proteins in eukaryotic cells. We demonstrated that treatment of THP-1 human monocytic leukemia cells with Z-LLL-CHO, a reversible proteasome inhibitor, induced cell death through an apoptotic pathway. Apop...
Saved in:
Published in: | Cancer research (Chicago, Ill.) Ill.), 2000-08, Vol.60 (16), p.4377-4385 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ubiquitin-proteasome pathway is the principal mechanism for the degradation of short-lived proteins in eukaryotic cells. We demonstrated that treatment of THP-1 human monocytic leukemia cells with Z-LLL-CHO, a reversible proteasome inhibitor, induced cell death through an apoptotic pathway. Apoptosis in THP-1 cells induced by Z-LLL-CHO involved a cytochrome c-dependent pathway, which included the release of mitochondrial cytochrome c, activation of caspase-9 and -3, and cleavage of Bcl-2 into a shortened 22-kDa fragment. Induction of apoptosis by protease inhibitor also was detected in U937 and TF-1 leukemia cell lines and cells obtained from acute myelogenous leukemia patients but not in normal human blood monocytes. Treatment of human blood monocytes with Z-LLL-CHO did not induce apoptosis or Bcl-2 cleavage in these cells that rarely proliferate. Interestingly, when THP-1 cells were induced to undergo monocytic differentiation by bryostatin 1, a naturally occurring protein kinase C activator, they were no longer susceptible to apoptosis induced by Z-LLL-CHO. Bryostatin 1-induced differentiation of THP-1 cells was associated with growth arrest, acquisition of adherent capacity, and expression of membrane markers characteristic of blood monocytes. Likewise, differentiated THP-1 cells were refractory to Z-LLL-CHO-induced cytochrome c release, caspase activation, and Bcl-2 cleavage. Resistance to Z-LLL-CHO-induced apoptosis in differentiated THP-1 cells was not due to cell cycle arrest. These findings show that the action of proteasome inhibitors is mediated primarily through a cytochrome c-dependent pathway and induces apoptosis in leukemic cells that are not differentiated. |
---|---|
ISSN: | 0008-5472 1538-7445 |