Loading…
Nanoliter-scale non-invasive flow-rate quantification using micro-interferometric back-scatter and phase detection
The current trend toward miniaturization of fluid-handling systems, particularly those of micro-fluidic devices on the capillary-scale, will certainly lead to improvements in chemical and biochemical analyses. Unfortunately, when fluid volumes reach nano- and picoliter scale it is problematic to per...
Saved in:
Published in: | Fresenius' journal of analytical chemistry 2001-09, Vol.371 (2), p.234-237 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c313t-4859c416ad349e1cb068aa779f96f5604d212bce6aa1bc9e936031c86c472c553 |
---|---|
cites | |
container_end_page | 237 |
container_issue | 2 |
container_start_page | 234 |
container_title | Fresenius' journal of analytical chemistry |
container_volume | 371 |
creator | Markov, D A Bornhop, D J |
description | The current trend toward miniaturization of fluid-handling systems, particularly those of micro-fluidic devices on the capillary-scale, will certainly lead to improvements in chemical and biochemical analyses. Unfortunately, when fluid volumes reach nano- and picoliter scale it is problematic to perform non-invasive fast and accurate volume flow or flow velocity measurements. Here a simple, non-invasive method is presented for detecting and measuring linear flow velocity within fluid-filled capillaries. A small fluid volume is repeatedly heated locally by means of an infrared laser diode and using the micro-interferometric back-scatter detector (MIBD) at a fixed distance downstream, a thermally induced change in refractive index is observed when the heated volume traverses the probe volume of the detector. Fluid velocity is calculated by monitoring the phase difference between the second harmonic of the heating function and the resulting MIBD output in the Fourier domain. In a probe volume of 40 nL flow rates between 1 and 10 µL min–¹are quantifiable, with 3σ detection limits determined to be 42.8 nL min–¹. |
doi_str_mv | 10.1007/s002160101000 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72226137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72226137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-4859c416ad349e1cb068aa779f96f5604d212bce6aa1bc9e936031c86c472c553</originalsourceid><addsrcrecordid>eNpVkM9rFTEQx4Mo9lk9etWcvEUzyb5kc5RSf0DRQ9vzMpudrdHdzWuSbel_b5b3QGQYBobPfGC-jL0F-RGktJ-ylAqMhFpSPmM7aLQSAFo-ZzvptBXSaH3GXuX8W26oUy_ZGYCxLTi7Y-kHLnEKhZLIHifiS1xEWB4whwfi4xQfRcJC_H7FpYQxeCwhLnzNYbnjc_ApVrpej5TiTCUFz3v0fzZZqWuOy8APvzATH6iQ345fsxcjTpnenOY5u_1yeXPxTVz9_Pr94vOV8Bp0EU27d74Bg4NuHIHvpWkRrXWjM-PeyGZQoHpPBhF678hpIzX41vjGKr_f63P24eg9pHi_Ui7dHLKnacKF4po7q5QyoG0FxRGs3-ScaOwOKcyYnjqQ3RZy91_IlX93Eq_9TMM_-pRqBd4fgRFjh3cp5O72Wslq2Lp1oP8C5fyCAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72226137</pqid></control><display><type>article</type><title>Nanoliter-scale non-invasive flow-rate quantification using micro-interferometric back-scatter and phase detection</title><source>Springer Nature</source><creator>Markov, D A ; Bornhop, D J</creator><creatorcontrib>Markov, D A ; Bornhop, D J</creatorcontrib><description>The current trend toward miniaturization of fluid-handling systems, particularly those of micro-fluidic devices on the capillary-scale, will certainly lead to improvements in chemical and biochemical analyses. Unfortunately, when fluid volumes reach nano- and picoliter scale it is problematic to perform non-invasive fast and accurate volume flow or flow velocity measurements. Here a simple, non-invasive method is presented for detecting and measuring linear flow velocity within fluid-filled capillaries. A small fluid volume is repeatedly heated locally by means of an infrared laser diode and using the micro-interferometric back-scatter detector (MIBD) at a fixed distance downstream, a thermally induced change in refractive index is observed when the heated volume traverses the probe volume of the detector. Fluid velocity is calculated by monitoring the phase difference between the second harmonic of the heating function and the resulting MIBD output in the Fourier domain. In a probe volume of 40 nL flow rates between 1 and 10 µL min–¹are quantifiable, with 3σ detection limits determined to be 42.8 nL min–¹.</description><identifier>ISSN: 0937-0633</identifier><identifier>EISSN: 1432-1130</identifier><identifier>DOI: 10.1007/s002160101000</identifier><identifier>PMID: 11678197</identifier><language>eng</language><publisher>Germany: Springer-Verlag</publisher><ispartof>Fresenius' journal of analytical chemistry, 2001-09, Vol.371 (2), p.234-237</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-4859c416ad349e1cb068aa779f96f5604d212bce6aa1bc9e936031c86c472c553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11678197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Markov, D A</creatorcontrib><creatorcontrib>Bornhop, D J</creatorcontrib><title>Nanoliter-scale non-invasive flow-rate quantification using micro-interferometric back-scatter and phase detection</title><title>Fresenius' journal of analytical chemistry</title><addtitle>Fresenius J Anal Chem</addtitle><description>The current trend toward miniaturization of fluid-handling systems, particularly those of micro-fluidic devices on the capillary-scale, will certainly lead to improvements in chemical and biochemical analyses. Unfortunately, when fluid volumes reach nano- and picoliter scale it is problematic to perform non-invasive fast and accurate volume flow or flow velocity measurements. Here a simple, non-invasive method is presented for detecting and measuring linear flow velocity within fluid-filled capillaries. A small fluid volume is repeatedly heated locally by means of an infrared laser diode and using the micro-interferometric back-scatter detector (MIBD) at a fixed distance downstream, a thermally induced change in refractive index is observed when the heated volume traverses the probe volume of the detector. Fluid velocity is calculated by monitoring the phase difference between the second harmonic of the heating function and the resulting MIBD output in the Fourier domain. In a probe volume of 40 nL flow rates between 1 and 10 µL min–¹are quantifiable, with 3σ detection limits determined to be 42.8 nL min–¹.</description><issn>0937-0633</issn><issn>1432-1130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpVkM9rFTEQx4Mo9lk9etWcvEUzyb5kc5RSf0DRQ9vzMpudrdHdzWuSbel_b5b3QGQYBobPfGC-jL0F-RGktJ-ylAqMhFpSPmM7aLQSAFo-ZzvptBXSaH3GXuX8W26oUy_ZGYCxLTi7Y-kHLnEKhZLIHifiS1xEWB4whwfi4xQfRcJC_H7FpYQxeCwhLnzNYbnjc_ApVrpej5TiTCUFz3v0fzZZqWuOy8APvzATH6iQ345fsxcjTpnenOY5u_1yeXPxTVz9_Pr94vOV8Bp0EU27d74Bg4NuHIHvpWkRrXWjM-PeyGZQoHpPBhF678hpIzX41vjGKr_f63P24eg9pHi_Ui7dHLKnacKF4po7q5QyoG0FxRGs3-ScaOwOKcyYnjqQ3RZy91_IlX93Eq_9TMM_-pRqBd4fgRFjh3cp5O72Wslq2Lp1oP8C5fyCAg</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Markov, D A</creator><creator>Bornhop, D J</creator><general>Springer-Verlag</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010901</creationdate><title>Nanoliter-scale non-invasive flow-rate quantification using micro-interferometric back-scatter and phase detection</title><author>Markov, D A ; Bornhop, D J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-4859c416ad349e1cb068aa779f96f5604d212bce6aa1bc9e936031c86c472c553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markov, D A</creatorcontrib><creatorcontrib>Bornhop, D J</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Fresenius' journal of analytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markov, D A</au><au>Bornhop, D J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoliter-scale non-invasive flow-rate quantification using micro-interferometric back-scatter and phase detection</atitle><jtitle>Fresenius' journal of analytical chemistry</jtitle><addtitle>Fresenius J Anal Chem</addtitle><date>2001-09-01</date><risdate>2001</risdate><volume>371</volume><issue>2</issue><spage>234</spage><epage>237</epage><pages>234-237</pages><issn>0937-0633</issn><eissn>1432-1130</eissn><abstract>The current trend toward miniaturization of fluid-handling systems, particularly those of micro-fluidic devices on the capillary-scale, will certainly lead to improvements in chemical and biochemical analyses. Unfortunately, when fluid volumes reach nano- and picoliter scale it is problematic to perform non-invasive fast and accurate volume flow or flow velocity measurements. Here a simple, non-invasive method is presented for detecting and measuring linear flow velocity within fluid-filled capillaries. A small fluid volume is repeatedly heated locally by means of an infrared laser diode and using the micro-interferometric back-scatter detector (MIBD) at a fixed distance downstream, a thermally induced change in refractive index is observed when the heated volume traverses the probe volume of the detector. Fluid velocity is calculated by monitoring the phase difference between the second harmonic of the heating function and the resulting MIBD output in the Fourier domain. In a probe volume of 40 nL flow rates between 1 and 10 µL min–¹are quantifiable, with 3σ detection limits determined to be 42.8 nL min–¹.</abstract><cop>Germany</cop><pub>Springer-Verlag</pub><pmid>11678197</pmid><doi>10.1007/s002160101000</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0937-0633 |
ispartof | Fresenius' journal of analytical chemistry, 2001-09, Vol.371 (2), p.234-237 |
issn | 0937-0633 1432-1130 |
language | eng |
recordid | cdi_proquest_miscellaneous_72226137 |
source | Springer Nature |
title | Nanoliter-scale non-invasive flow-rate quantification using micro-interferometric back-scatter and phase detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoliter-scale%20non-invasive%20flow-rate%20quantification%20using%20micro-interferometric%20back-scatter%20and%20phase%20detection&rft.jtitle=Fresenius'%20journal%20of%20analytical%20chemistry&rft.au=Markov,%20D%20A&rft.date=2001-09-01&rft.volume=371&rft.issue=2&rft.spage=234&rft.epage=237&rft.pages=234-237&rft.issn=0937-0633&rft.eissn=1432-1130&rft_id=info:doi/10.1007/s002160101000&rft_dat=%3Cproquest_cross%3E72226137%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-4859c416ad349e1cb068aa779f96f5604d212bce6aa1bc9e936031c86c472c553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72226137&rft_id=info:pmid/11678197&rfr_iscdi=true |