Loading…

Nanoliter-scale non-invasive flow-rate quantification using micro-interferometric back-scatter and phase detection

The current trend toward miniaturization of fluid-handling systems, particularly those of micro-fluidic devices on the capillary-scale, will certainly lead to improvements in chemical and biochemical analyses. Unfortunately, when fluid volumes reach nano- and picoliter scale it is problematic to per...

Full description

Saved in:
Bibliographic Details
Published in:Fresenius' journal of analytical chemistry 2001-09, Vol.371 (2), p.234-237
Main Authors: Markov, D A, Bornhop, D J
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-4859c416ad349e1cb068aa779f96f5604d212bce6aa1bc9e936031c86c472c553
cites
container_end_page 237
container_issue 2
container_start_page 234
container_title Fresenius' journal of analytical chemistry
container_volume 371
creator Markov, D A
Bornhop, D J
description The current trend toward miniaturization of fluid-handling systems, particularly those of micro-fluidic devices on the capillary-scale, will certainly lead to improvements in chemical and biochemical analyses. Unfortunately, when fluid volumes reach nano- and picoliter scale it is problematic to perform non-invasive fast and accurate volume flow or flow velocity measurements. Here a simple, non-invasive method is presented for detecting and measuring linear flow velocity within fluid-filled capillaries. A small fluid volume is repeatedly heated locally by means of an infrared laser diode and using the micro-interferometric back-scatter detector (MIBD) at a fixed distance downstream, a thermally induced change in refractive index is observed when the heated volume traverses the probe volume of the detector. Fluid velocity is calculated by monitoring the phase difference between the second harmonic of the heating function and the resulting MIBD output in the Fourier domain. In a probe volume of 40 nL flow rates between 1 and 10 µL min–¹are quantifiable, with 3σ detection limits determined to be 42.8 nL min–¹.
doi_str_mv 10.1007/s002160101000
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72226137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72226137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-4859c416ad349e1cb068aa779f96f5604d212bce6aa1bc9e936031c86c472c553</originalsourceid><addsrcrecordid>eNpVkM9rFTEQx4Mo9lk9etWcvEUzyb5kc5RSf0DRQ9vzMpudrdHdzWuSbel_b5b3QGQYBobPfGC-jL0F-RGktJ-ylAqMhFpSPmM7aLQSAFo-ZzvptBXSaH3GXuX8W26oUy_ZGYCxLTi7Y-kHLnEKhZLIHifiS1xEWB4whwfi4xQfRcJC_H7FpYQxeCwhLnzNYbnjc_ApVrpej5TiTCUFz3v0fzZZqWuOy8APvzATH6iQ345fsxcjTpnenOY5u_1yeXPxTVz9_Pr94vOV8Bp0EU27d74Bg4NuHIHvpWkRrXWjM-PeyGZQoHpPBhF678hpIzX41vjGKr_f63P24eg9pHi_Ui7dHLKnacKF4po7q5QyoG0FxRGs3-ScaOwOKcyYnjqQ3RZy91_IlX93Eq_9TMM_-pRqBd4fgRFjh3cp5O72Wslq2Lp1oP8C5fyCAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72226137</pqid></control><display><type>article</type><title>Nanoliter-scale non-invasive flow-rate quantification using micro-interferometric back-scatter and phase detection</title><source>Springer Nature</source><creator>Markov, D A ; Bornhop, D J</creator><creatorcontrib>Markov, D A ; Bornhop, D J</creatorcontrib><description>The current trend toward miniaturization of fluid-handling systems, particularly those of micro-fluidic devices on the capillary-scale, will certainly lead to improvements in chemical and biochemical analyses. Unfortunately, when fluid volumes reach nano- and picoliter scale it is problematic to perform non-invasive fast and accurate volume flow or flow velocity measurements. Here a simple, non-invasive method is presented for detecting and measuring linear flow velocity within fluid-filled capillaries. A small fluid volume is repeatedly heated locally by means of an infrared laser diode and using the micro-interferometric back-scatter detector (MIBD) at a fixed distance downstream, a thermally induced change in refractive index is observed when the heated volume traverses the probe volume of the detector. Fluid velocity is calculated by monitoring the phase difference between the second harmonic of the heating function and the resulting MIBD output in the Fourier domain. In a probe volume of 40 nL flow rates between 1 and 10 µL min–¹are quantifiable, with 3σ detection limits determined to be 42.8 nL min–¹.</description><identifier>ISSN: 0937-0633</identifier><identifier>EISSN: 1432-1130</identifier><identifier>DOI: 10.1007/s002160101000</identifier><identifier>PMID: 11678197</identifier><language>eng</language><publisher>Germany: Springer-Verlag</publisher><ispartof>Fresenius' journal of analytical chemistry, 2001-09, Vol.371 (2), p.234-237</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-4859c416ad349e1cb068aa779f96f5604d212bce6aa1bc9e936031c86c472c553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11678197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Markov, D A</creatorcontrib><creatorcontrib>Bornhop, D J</creatorcontrib><title>Nanoliter-scale non-invasive flow-rate quantification using micro-interferometric back-scatter and phase detection</title><title>Fresenius' journal of analytical chemistry</title><addtitle>Fresenius J Anal Chem</addtitle><description>The current trend toward miniaturization of fluid-handling systems, particularly those of micro-fluidic devices on the capillary-scale, will certainly lead to improvements in chemical and biochemical analyses. Unfortunately, when fluid volumes reach nano- and picoliter scale it is problematic to perform non-invasive fast and accurate volume flow or flow velocity measurements. Here a simple, non-invasive method is presented for detecting and measuring linear flow velocity within fluid-filled capillaries. A small fluid volume is repeatedly heated locally by means of an infrared laser diode and using the micro-interferometric back-scatter detector (MIBD) at a fixed distance downstream, a thermally induced change in refractive index is observed when the heated volume traverses the probe volume of the detector. Fluid velocity is calculated by monitoring the phase difference between the second harmonic of the heating function and the resulting MIBD output in the Fourier domain. In a probe volume of 40 nL flow rates between 1 and 10 µL min–¹are quantifiable, with 3σ detection limits determined to be 42.8 nL min–¹.</description><issn>0937-0633</issn><issn>1432-1130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpVkM9rFTEQx4Mo9lk9etWcvEUzyb5kc5RSf0DRQ9vzMpudrdHdzWuSbel_b5b3QGQYBobPfGC-jL0F-RGktJ-ylAqMhFpSPmM7aLQSAFo-ZzvptBXSaH3GXuX8W26oUy_ZGYCxLTi7Y-kHLnEKhZLIHifiS1xEWB4whwfi4xQfRcJC_H7FpYQxeCwhLnzNYbnjc_ApVrpej5TiTCUFz3v0fzZZqWuOy8APvzATH6iQ345fsxcjTpnenOY5u_1yeXPxTVz9_Pr94vOV8Bp0EU27d74Bg4NuHIHvpWkRrXWjM-PeyGZQoHpPBhF678hpIzX41vjGKr_f63P24eg9pHi_Ui7dHLKnacKF4po7q5QyoG0FxRGs3-ScaOwOKcyYnjqQ3RZy91_IlX93Eq_9TMM_-pRqBd4fgRFjh3cp5O72Wslq2Lp1oP8C5fyCAg</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Markov, D A</creator><creator>Bornhop, D J</creator><general>Springer-Verlag</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010901</creationdate><title>Nanoliter-scale non-invasive flow-rate quantification using micro-interferometric back-scatter and phase detection</title><author>Markov, D A ; Bornhop, D J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-4859c416ad349e1cb068aa779f96f5604d212bce6aa1bc9e936031c86c472c553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markov, D A</creatorcontrib><creatorcontrib>Bornhop, D J</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Fresenius' journal of analytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markov, D A</au><au>Bornhop, D J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoliter-scale non-invasive flow-rate quantification using micro-interferometric back-scatter and phase detection</atitle><jtitle>Fresenius' journal of analytical chemistry</jtitle><addtitle>Fresenius J Anal Chem</addtitle><date>2001-09-01</date><risdate>2001</risdate><volume>371</volume><issue>2</issue><spage>234</spage><epage>237</epage><pages>234-237</pages><issn>0937-0633</issn><eissn>1432-1130</eissn><abstract>The current trend toward miniaturization of fluid-handling systems, particularly those of micro-fluidic devices on the capillary-scale, will certainly lead to improvements in chemical and biochemical analyses. Unfortunately, when fluid volumes reach nano- and picoliter scale it is problematic to perform non-invasive fast and accurate volume flow or flow velocity measurements. Here a simple, non-invasive method is presented for detecting and measuring linear flow velocity within fluid-filled capillaries. A small fluid volume is repeatedly heated locally by means of an infrared laser diode and using the micro-interferometric back-scatter detector (MIBD) at a fixed distance downstream, a thermally induced change in refractive index is observed when the heated volume traverses the probe volume of the detector. Fluid velocity is calculated by monitoring the phase difference between the second harmonic of the heating function and the resulting MIBD output in the Fourier domain. In a probe volume of 40 nL flow rates between 1 and 10 µL min–¹are quantifiable, with 3σ detection limits determined to be 42.8 nL min–¹.</abstract><cop>Germany</cop><pub>Springer-Verlag</pub><pmid>11678197</pmid><doi>10.1007/s002160101000</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0937-0633
ispartof Fresenius' journal of analytical chemistry, 2001-09, Vol.371 (2), p.234-237
issn 0937-0633
1432-1130
language eng
recordid cdi_proquest_miscellaneous_72226137
source Springer Nature
title Nanoliter-scale non-invasive flow-rate quantification using micro-interferometric back-scatter and phase detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoliter-scale%20non-invasive%20flow-rate%20quantification%20using%20micro-interferometric%20back-scatter%20and%20phase%20detection&rft.jtitle=Fresenius'%20journal%20of%20analytical%20chemistry&rft.au=Markov,%20D%20A&rft.date=2001-09-01&rft.volume=371&rft.issue=2&rft.spage=234&rft.epage=237&rft.pages=234-237&rft.issn=0937-0633&rft.eissn=1432-1130&rft_id=info:doi/10.1007/s002160101000&rft_dat=%3Cproquest_cross%3E72226137%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-4859c416ad349e1cb068aa779f96f5604d212bce6aa1bc9e936031c86c472c553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72226137&rft_id=info:pmid/11678197&rfr_iscdi=true