Loading…

Xanthine dehydrogenase (XDH): episodic evolution of a "neutral" protein

We investigated the evolution of xanthine dehydrogenase (Xdh) in 34 species from the three multicellular kingdoms, including one plant, two fungi, and three animal phyla, two classes of vertebrates, four orders of mammals, and two orders of insects. We adopted a model-based maximum-likelihood framew...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular evolution 2001-10, Vol.53 (4-5), p.485-495
Main Authors: Rodríguez-Trelles, F, Tarrío, R, Ayala, F J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigated the evolution of xanthine dehydrogenase (Xdh) in 34 species from the three multicellular kingdoms, including one plant, two fungi, and three animal phyla, two classes of vertebrates, four orders of mammals, and two orders of insects. We adopted a model-based maximum-likelihood framework of inference. After accounting for among-site rate variation and heterogeneous nucleotide composition of the sequences using the discrete gamma distribution, and using nonhomogeneous nonstationary representations of the substitution process, the rate of amino acid replacement is 30.4 x 10(-10)/site/year when Drosophila species are compared but only approximately 18 x 10(-10)/site/year when comparisons are made between mammal orders, between insect orders, or between different animal phyla and approximately 11 x 10(-10)/site/year when comparisons are made between birds and mammals, between fungi, or between the three multicellular kingdoms. To account for these observations, the rate of amino acid replacement must have been eight or more times higher in some lineages and at some times than in others. Spastic evolution of Xdh appears to be related to the particularities of the genomes in which the locus is embedded.
ISSN:0022-2844
1432-1432
DOI:10.1007/s002390010239