Loading…

Comparison of the two murine terminal [corrected] deoxynucleotidyltransferase terminal isoforms. A 20-amino acid insertion in the highly conserved carboxyl-terminal region modifies the thermosensitivity but not the catalytic activity

Terminal deoxynucleotidyltransferase (TdT) catalyzes the addition of nucleotides to 3'-hydroxyl ends of DNA strands in a template-independent manner and has been shown to add N-regions to gene segment junctions during V(D)J recombination. TdT is highly conserved in all vertebrate species, with...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2000-09, Vol.275 (37), p.28984-28988
Main Authors: Boulé, J B, Rougeon, F, Papanicolaou, C
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Terminal deoxynucleotidyltransferase (TdT) catalyzes the addition of nucleotides to 3'-hydroxyl ends of DNA strands in a template-independent manner and has been shown to add N-regions to gene segment junctions during V(D)J recombination. TdT is highly conserved in all vertebrate species, with a second isoform, characterized by a 20-amino acid insertion near the COOH-terminal end, described only in the mouse. The two murine isoforms differ in their subcellular localization, and the long isoform (TdTL) has previously been found to be unable to add N-regions. Using purified protein produced in a high level expression system in Escherichia coli, we were able to carry out detailed catalytic comparisons of these two TdT isoforms. We discovered that TdTL exhibits terminal transferase activity with kinetic parameters similar to those of the conserved TdT isoform (TdTS). We observed, however, that TdTL is inactivated at physiologic temperature but stable at lower temperatures. This thermal sensitivity of TdTL polymerase activity is not correlated with a significant change in the circular dichroism spectrum of the protein. Thus, the 20-amino acid insertion in TdTL does not affect the catalytic activity but modifies the thermosensitivity.
ISSN:0021-9258