Loading…

Creatine supplementation affects sprint endurance in juvenile rainbow trout

Fingerling rainbow trout were supplemented with equal amounts of creatine (Cr) by two routes: dietary (12.5 mg Cr per g food); or intraperitoneal injection (0.5 mg Cr per g fish). Endurance in a fixed velocity sprint test (at a speed of 7 BL s −1), and resting levels of white muscle metabolites (tot...

Full description

Saved in:
Bibliographic Details
Published in:Comparative biochemistry and physiology. Part A, Molecular & integrative physiology Molecular & integrative physiology, 2001-11, Vol.130 (4), p.857-866
Main Authors: McFarlane, W.J, Heigenhauser, G.J.F, McDonald, D.G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fingerling rainbow trout were supplemented with equal amounts of creatine (Cr) by two routes: dietary (12.5 mg Cr per g food); or intraperitoneal injection (0.5 mg Cr per g fish). Endurance in a fixed velocity sprint test (at a speed of 7 BL s −1), and resting levels of white muscle metabolites (total creatine [a measure of free creatine plus phosphocreatine (PCr), ATP, lactate and glycogen] were assessed following 7 days of supplementation and compared to controls. None of the treatments had a significant effect on growth, muscle total creatine, percent phosphorylation of creatine, ATP or lactate. However, resting muscle glycogen was elevated in creatine-supplemented fish. Higher muscle glycogen corresponded to significantly greater endurance in creatine-supplemented fish. Although fish do not actively transport additional creatine into the muscle, a mechanism whereby circulating creatine acts to enhance muscle glycogen is present. These results suggest that the improved endurance may be due to an insulin-dependent mechanism (similar to that elucidated in mammalian studies) that allows fish to supercompensate muscle glycogen stores, thus extending endurance through enhanced glycolytic flux.
ISSN:1095-6433
1531-4332
DOI:10.1016/S1095-6433(01)00448-2