Loading…
Compound heterozygosity and nonsense mutations in the alpha(1)-subunit of the inhibitory glycine receptor in hyperekplexia
The alpha(1)-inhibitory glycine receptor is a ligand-gated chloride channel composed of three ligand-binding alpha1-subunits and two structural beta-subunits that are clustered on the postsynaptic membrane of inhibitory glycinergic neurons. Dominant and recessive mutations in GLRA1 subunits have bee...
Saved in:
Published in: | Human genetics 2001-09, Vol.109 (3), p.267-270 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The alpha(1)-inhibitory glycine receptor is a ligand-gated chloride channel composed of three ligand-binding alpha1-subunits and two structural beta-subunits that are clustered on the postsynaptic membrane of inhibitory glycinergic neurons. Dominant and recessive mutations in GLRA1 subunits have been associated with a proportion of individuals and families with startle disease or hyperekplexia (MIM: 149400). Following SSCP and bi-directional di-deoxy fingerprinting mutational analysis of 22 unrelated individuals with hyperekplexia and hyperekplexia-related conditions, we report further novel missense mutations and the first nonsense point mutations in GLRA1, the majority of which localise outside the regions previously associated with dominant, disease-segregating mutations. Population studies reveal the unique association of each mutation with disease, and reveals that a proportion of sporadic hyperekplexia is accounted for by the homozygous inheritance of recessive GLRA1 mutations or as part of a compound heterozygote. |
---|---|
ISSN: | 0340-6717 |
DOI: | 10.1007/s004390100569 |