Loading…
Molecular Characterization of a Novel Intracellular Hyaluronan-binding Protein
Hyaluronan has well defined functions in extracellular matrices and at the surface of cells. However, several studies have now shown that significant pools of hyaluronan are also present intracellularly, but its function therein is unknown. One avenue of investigation that may assist in defining the...
Saved in:
Published in: | The Journal of biological chemistry 2000-09, Vol.275 (38), p.29829-29839 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-2ac5876f45159c49a12a26f2230a1e60ab8b6861a0096da21223aa09f68512ba3 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-2ac5876f45159c49a12a26f2230a1e60ab8b6861a0096da21223aa09f68512ba3 |
container_end_page | 29839 |
container_issue | 38 |
container_start_page | 29829 |
container_title | The Journal of biological chemistry |
container_volume | 275 |
creator | Huang, Lei Grammatikakis, Nicholas Yoneda, Masahiko Banerjee, Shib D. Toole, Bryan P. |
description | Hyaluronan has well defined functions in extracellular matrices and at the surface of cells. However, several studies have now shown that significant pools of hyaluronan are also present intracellularly, but its function therein is unknown. One avenue of investigation that may assist in defining the function of intracellular hyaluronan is to identify intracellular hyaluronan-binding proteins. In previous studies we identified CDC37, a cell cycle regulatory protein, using a monoclonal antibody that recognizes a novel group of hyaluronan-binding proteins. In this study, we have identified a second hyaluronan-binding protein with this antibody and characterized its properties. This protein, which we have termed IHABP4, was also found to be an intracellular and a specific hyaluronan-binding protein, containing several hyaluronan-binding motifs: (R/K)X7(R/K) (where R/K denotes arginine or lysine and X denotes non-acidic amino acids). Furthermore, we have determined the gene organization ofIHABP4 and cloned cDNAs for the chick, mouse, and human homologs. Comparison of the deduced chick, mouse, and human protein sequences showed that the hyaluronan-binding motifs, (R/K)X7(R/K), in these sequences are conserved; both chick and mouse IHABP4 were shown directly to bind hyaluronan. Biochemical fractionation and immunofluorescent localization of epitope-tagged IHABP4 indicated that it is mainly present in the cytoplasm. These data support the possibility that intracellular hyaluronan and its binding proteins may play important roles in cell behavior. |
doi_str_mv | 10.1074/jbc.M002737200 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72270705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819794757</els_id><sourcerecordid>72270705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-2ac5876f45159c49a12a26f2230a1e60ab8b6861a0096da21223aa09f68512ba3</originalsourceid><addsrcrecordid>eNp1kE1P3DAQhq2Kqiy01x6rHBC3bMfOh-0jWlFAAtpDK_VmTZwJa5S1wU6o6K_HEKRy6VxGmnlm9Oph7DOHNQdZf73t7PoKQMhKCoB3bMVBVWXV8N97bJXnvNSiUfvsIKVbyFVr_oHtZ0hJrsSKXV-Fkew8Yiw2W4xoJ4ruL04u-CIMBRbX4YHG4sJPeUfj-EKeP-I4x-DRl53zvfM3xY8YJnL-I3s_4Jjo02s_ZL--nf7cnJeX388uNieXpa1BT6VA2yjZDnXDG21rjVygaAchKkBOLWCnula1HAF026PgeYMIemhVw0WH1SE7Xv7exXA_U5rMzqXnfOgpzMlIISRIaDK4XkAbQ0qRBnMX3Q7jo-Fgng2abND8M5gPvrx-nrsd9W_wRVkGjhZg6262f1wk07lgt7QzQjamUkZoJXTG1IJR1vDgKJpkHXlLfT6xk-mD-1-EJxtlik0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72270705</pqid></control><display><type>article</type><title>Molecular Characterization of a Novel Intracellular Hyaluronan-binding Protein</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Lei ; Grammatikakis, Nicholas ; Yoneda, Masahiko ; Banerjee, Shib D. ; Toole, Bryan P.</creator><creatorcontrib>Huang, Lei ; Grammatikakis, Nicholas ; Yoneda, Masahiko ; Banerjee, Shib D. ; Toole, Bryan P.</creatorcontrib><description>Hyaluronan has well defined functions in extracellular matrices and at the surface of cells. However, several studies have now shown that significant pools of hyaluronan are also present intracellularly, but its function therein is unknown. One avenue of investigation that may assist in defining the function of intracellular hyaluronan is to identify intracellular hyaluronan-binding proteins. In previous studies we identified CDC37, a cell cycle regulatory protein, using a monoclonal antibody that recognizes a novel group of hyaluronan-binding proteins. In this study, we have identified a second hyaluronan-binding protein with this antibody and characterized its properties. This protein, which we have termed IHABP4, was also found to be an intracellular and a specific hyaluronan-binding protein, containing several hyaluronan-binding motifs: (R/K)X7(R/K) (where R/K denotes arginine or lysine and X denotes non-acidic amino acids). Furthermore, we have determined the gene organization ofIHABP4 and cloned cDNAs for the chick, mouse, and human homologs. Comparison of the deduced chick, mouse, and human protein sequences showed that the hyaluronan-binding motifs, (R/K)X7(R/K), in these sequences are conserved; both chick and mouse IHABP4 were shown directly to bind hyaluronan. Biochemical fractionation and immunofluorescent localization of epitope-tagged IHABP4 indicated that it is mainly present in the cytoplasm. These data support the possibility that intracellular hyaluronan and its binding proteins may play important roles in cell behavior.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M002737200</identifier><identifier>PMID: 10887182</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Base Sequence ; Chick Embryo ; Cloning, Molecular ; Cytoplasm ; Humans ; Hyaluronan Receptors - analysis ; Hyaluronan Receptors - genetics ; Hyaluronan Receptors - metabolism ; Hyaluronic Acid - metabolism ; Mice ; Molecular Sequence Data ; Protein Binding ; Sequence Analysis</subject><ispartof>The Journal of biological chemistry, 2000-09, Vol.275 (38), p.29829-29839</ispartof><rights>2000 © 2000 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-2ac5876f45159c49a12a26f2230a1e60ab8b6861a0096da21223aa09f68512ba3</citedby><cites>FETCH-LOGICAL-c409t-2ac5876f45159c49a12a26f2230a1e60ab8b6861a0096da21223aa09f68512ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925819794757$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3536,27905,27906,45761</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10887182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Grammatikakis, Nicholas</creatorcontrib><creatorcontrib>Yoneda, Masahiko</creatorcontrib><creatorcontrib>Banerjee, Shib D.</creatorcontrib><creatorcontrib>Toole, Bryan P.</creatorcontrib><title>Molecular Characterization of a Novel Intracellular Hyaluronan-binding Protein</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Hyaluronan has well defined functions in extracellular matrices and at the surface of cells. However, several studies have now shown that significant pools of hyaluronan are also present intracellularly, but its function therein is unknown. One avenue of investigation that may assist in defining the function of intracellular hyaluronan is to identify intracellular hyaluronan-binding proteins. In previous studies we identified CDC37, a cell cycle regulatory protein, using a monoclonal antibody that recognizes a novel group of hyaluronan-binding proteins. In this study, we have identified a second hyaluronan-binding protein with this antibody and characterized its properties. This protein, which we have termed IHABP4, was also found to be an intracellular and a specific hyaluronan-binding protein, containing several hyaluronan-binding motifs: (R/K)X7(R/K) (where R/K denotes arginine or lysine and X denotes non-acidic amino acids). Furthermore, we have determined the gene organization ofIHABP4 and cloned cDNAs for the chick, mouse, and human homologs. Comparison of the deduced chick, mouse, and human protein sequences showed that the hyaluronan-binding motifs, (R/K)X7(R/K), in these sequences are conserved; both chick and mouse IHABP4 were shown directly to bind hyaluronan. Biochemical fractionation and immunofluorescent localization of epitope-tagged IHABP4 indicated that it is mainly present in the cytoplasm. These data support the possibility that intracellular hyaluronan and its binding proteins may play important roles in cell behavior.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Chick Embryo</subject><subject>Cloning, Molecular</subject><subject>Cytoplasm</subject><subject>Humans</subject><subject>Hyaluronan Receptors - analysis</subject><subject>Hyaluronan Receptors - genetics</subject><subject>Hyaluronan Receptors - metabolism</subject><subject>Hyaluronic Acid - metabolism</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Protein Binding</subject><subject>Sequence Analysis</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1kE1P3DAQhq2Kqiy01x6rHBC3bMfOh-0jWlFAAtpDK_VmTZwJa5S1wU6o6K_HEKRy6VxGmnlm9Oph7DOHNQdZf73t7PoKQMhKCoB3bMVBVWXV8N97bJXnvNSiUfvsIKVbyFVr_oHtZ0hJrsSKXV-Fkew8Yiw2W4xoJ4ruL04u-CIMBRbX4YHG4sJPeUfj-EKeP-I4x-DRl53zvfM3xY8YJnL-I3s_4Jjo02s_ZL--nf7cnJeX388uNieXpa1BT6VA2yjZDnXDG21rjVygaAchKkBOLWCnula1HAF026PgeYMIemhVw0WH1SE7Xv7exXA_U5rMzqXnfOgpzMlIISRIaDK4XkAbQ0qRBnMX3Q7jo-Fgng2abND8M5gPvrx-nrsd9W_wRVkGjhZg6262f1wk07lgt7QzQjamUkZoJXTG1IJR1vDgKJpkHXlLfT6xk-mD-1-EJxtlik0</recordid><startdate>20000922</startdate><enddate>20000922</enddate><creator>Huang, Lei</creator><creator>Grammatikakis, Nicholas</creator><creator>Yoneda, Masahiko</creator><creator>Banerjee, Shib D.</creator><creator>Toole, Bryan P.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000922</creationdate><title>Molecular Characterization of a Novel Intracellular Hyaluronan-binding Protein</title><author>Huang, Lei ; Grammatikakis, Nicholas ; Yoneda, Masahiko ; Banerjee, Shib D. ; Toole, Bryan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-2ac5876f45159c49a12a26f2230a1e60ab8b6861a0096da21223aa09f68512ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Chick Embryo</topic><topic>Cloning, Molecular</topic><topic>Cytoplasm</topic><topic>Humans</topic><topic>Hyaluronan Receptors - analysis</topic><topic>Hyaluronan Receptors - genetics</topic><topic>Hyaluronan Receptors - metabolism</topic><topic>Hyaluronic Acid - metabolism</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Protein Binding</topic><topic>Sequence Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Grammatikakis, Nicholas</creatorcontrib><creatorcontrib>Yoneda, Masahiko</creatorcontrib><creatorcontrib>Banerjee, Shib D.</creatorcontrib><creatorcontrib>Toole, Bryan P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Lei</au><au>Grammatikakis, Nicholas</au><au>Yoneda, Masahiko</au><au>Banerjee, Shib D.</au><au>Toole, Bryan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Characterization of a Novel Intracellular Hyaluronan-binding Protein</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2000-09-22</date><risdate>2000</risdate><volume>275</volume><issue>38</issue><spage>29829</spage><epage>29839</epage><pages>29829-29839</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Hyaluronan has well defined functions in extracellular matrices and at the surface of cells. However, several studies have now shown that significant pools of hyaluronan are also present intracellularly, but its function therein is unknown. One avenue of investigation that may assist in defining the function of intracellular hyaluronan is to identify intracellular hyaluronan-binding proteins. In previous studies we identified CDC37, a cell cycle regulatory protein, using a monoclonal antibody that recognizes a novel group of hyaluronan-binding proteins. In this study, we have identified a second hyaluronan-binding protein with this antibody and characterized its properties. This protein, which we have termed IHABP4, was also found to be an intracellular and a specific hyaluronan-binding protein, containing several hyaluronan-binding motifs: (R/K)X7(R/K) (where R/K denotes arginine or lysine and X denotes non-acidic amino acids). Furthermore, we have determined the gene organization ofIHABP4 and cloned cDNAs for the chick, mouse, and human homologs. Comparison of the deduced chick, mouse, and human protein sequences showed that the hyaluronan-binding motifs, (R/K)X7(R/K), in these sequences are conserved; both chick and mouse IHABP4 were shown directly to bind hyaluronan. Biochemical fractionation and immunofluorescent localization of epitope-tagged IHABP4 indicated that it is mainly present in the cytoplasm. These data support the possibility that intracellular hyaluronan and its binding proteins may play important roles in cell behavior.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>10887182</pmid><doi>10.1074/jbc.M002737200</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2000-09, Vol.275 (38), p.29829-29839 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_72270705 |
source | Elsevier ScienceDirect Journals |
subjects | Amino Acid Sequence Animals Base Sequence Chick Embryo Cloning, Molecular Cytoplasm Humans Hyaluronan Receptors - analysis Hyaluronan Receptors - genetics Hyaluronan Receptors - metabolism Hyaluronic Acid - metabolism Mice Molecular Sequence Data Protein Binding Sequence Analysis |
title | Molecular Characterization of a Novel Intracellular Hyaluronan-binding Protein |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Characterization%20of%20a%20Novel%20Intracellular%20Hyaluronan-binding%20Protein&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Huang,%20Lei&rft.date=2000-09-22&rft.volume=275&rft.issue=38&rft.spage=29829&rft.epage=29839&rft.pages=29829-29839&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M002737200&rft_dat=%3Cproquest_cross%3E72270705%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-2ac5876f45159c49a12a26f2230a1e60ab8b6861a0096da21223aa09f68512ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72270705&rft_id=info:pmid/10887182&rfr_iscdi=true |