Loading…

Corticotropin secretory dynamics in humans under low glucocorticoid feedback

To explore the mechanisms of homeostatic adaptation of the hypothalamo-pituitary-adrenal axis to an experimental low-feedback condition, we quantitated pulsatile (ultradian), entropic (pattern-sensitive), and 24-h rhythmic (circadian) ACTH secretion during high-dose metyrapone blockade (2 g orally e...

Full description

Saved in:
Bibliographic Details
Published in:The journal of clinical endocrinology and metabolism 2001-11, Vol.86 (11), p.5554-5563
Main Authors: VELDHUIS, J. D, IRANMANESH, A, NAFTOLOWITZ, D, TATHAM, N, CASSIDY, F, CARROLL, B. J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To explore the mechanisms of homeostatic adaptation of the hypothalamo-pituitary-adrenal axis to an experimental low-feedback condition, we quantitated pulsatile (ultradian), entropic (pattern-sensitive), and 24-h rhythmic (circadian) ACTH secretion during high-dose metyrapone blockade (2 g orally every 2 h for 12 h, and then 1 g every 2 h for 12 h). Plasma ACTH and cortisol concentrations were sampled concurrently every 10 min for 24 h in nine adults. The metyrapone regimen reduced the amplitude of nyctohemeral cortisol rhythm by 45% (P = 0.0013) and delayed the time of the cortisol maximum (acrophase) by 7.1 h (P = 0.0002). Attenuated cortisol negative feedback stimulated a 7-fold increase in the mean (24-h) plasma ACTH concentration, which rose from 24 +/- 1.6 to 169 +/- 31 pg/ml (ng/liter) (P < 0.0001). Augmented ACTH output was driven by a 12-fold amplification of ACTH secretory burst mass (integral of the underlying secretory pulse) (21 +/- 3.1 to 255 +/- 64 pg/ml; P < 0.0001), yielding a higher percentage of ACTH secreted in pulses (53 +/- 3.5 vs. 92 +/- 1.3%; P < 0.0001). There were minimal elevations in basal (nonpulsatile) ACTH secretion (by 50%; P = 0.0049) and ACTH secretory burst frequency (by 36%; P = 0.031). The estimated half-life of ACTH (median, 22 min) and the calculated ACTH secretory burst half-duration (pulse event duration at half-maximal amplitude) (median, 23 min) did not change. Hypocortisolemia evoked remarkably more orderly subordinate patterns of serial ACTH release, as quantitated by the approximate entropy statistic (P = 0.003). This finding was explained by enhanced regularity of successive ACTH secretory pulse mass values (P = 0.032). In contrast, there was no alteration in serial ACTH interpulse-interval (waiting-time) regularity. At the level of 24-h ACTH rhythmicity, cortisol withdrawal enhanced the daily rhythm in ACTH secretory burst mass by 29-fold, elevated the mesor by 16-fold, and delayed the acrophase by 3.4 h from 0831 h to 1154 h (each P < 10(-3)). In summary, short-term glucocorticoid feedback deprivation primarily (>97% of effect) amplifies pulsatile ACTH secretory burst mass, while minimally elevating basal/nonpulsatile ACTH secretion and ACTH pulse frequency. Reduced cortisol feedback paradoxically elicits more orderly (less entropic) patterns of ACTH release due to emergence of more regular ACTH pulse mass sequences. Cortisol withdrawal concurrently heightens the amplitude and mesor of 24-h rhythmic ACTH re
ISSN:0021-972X
1945-7197
DOI:10.1210/jc.86.11.5554