Loading…
Inert Phosphorescent Nanospheres as Markers for Optical Assays
A simple encapsulation technique is presented to produce highly phosphorescent, inert nanospheres that are suitable luminescent markers. It is based on the coprecipitation of phosphorescent ruthenium(II)-tris(polypyridyl) complexes and polyacrylonitrile (PAN) derivatives from a solution in N,N-dimet...
Saved in:
Published in: | Bioconjugate chemistry 2001-11, Vol.12 (6), p.883-889 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A simple encapsulation technique is presented to produce highly phosphorescent, inert nanospheres that are suitable luminescent markers. It is based on the coprecipitation of phosphorescent ruthenium(II)-tris(polypyridyl) complexes and polyacrylonitrile (PAN) derivatives from a solution in N,N-dimethylformamide. The beads precipitate in the form of very small aggregates of spherical shape and a typical particle diameter of less than 50 nm. This process allows the encapsulation of phosphorescent and fluorescent dyes in an individual nanosphere provided that they are sufficiently lipophilic. Quenching by oxygen is negligible due to the use of PAN. The nanospheres were characterized with respect to their spectral properties (quantum yields of the luminophores, brightness, luminescence decay time), stability in aqueous buffered suspensions, and in terms of size, shape, and surface charge of the particles, as well as storage stability, quenching by oxygen, and dye leaching. |
---|---|
ISSN: | 1043-1802 1520-4812 |
DOI: | 10.1021/bc000130x |