Loading…

Inert Phosphorescent Nanospheres as Markers for Optical Assays

A simple encapsulation technique is presented to produce highly phosphorescent, inert nanospheres that are suitable luminescent markers. It is based on the coprecipitation of phosphorescent ruthenium(II)-tris(polypyridyl) complexes and polyacrylonitrile (PAN) derivatives from a solution in N,N-dimet...

Full description

Saved in:
Bibliographic Details
Published in:Bioconjugate chemistry 2001-11, Vol.12 (6), p.883-889
Main Authors: Kürner, Jens M, Klimant, Ingo, Krause, Christian, Preu, Harald, Kunz, Werner, Wolfbeis, Otto S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A simple encapsulation technique is presented to produce highly phosphorescent, inert nanospheres that are suitable luminescent markers. It is based on the coprecipitation of phosphorescent ruthenium(II)-tris(polypyridyl) complexes and polyacrylonitrile (PAN) derivatives from a solution in N,N-dimethylformamide. The beads precipitate in the form of very small aggregates of spherical shape and a typical particle diameter of less than 50 nm. This process allows the encapsulation of phosphorescent and fluorescent dyes in an individual nanosphere provided that they are sufficiently lipophilic. Quenching by oxygen is negligible due to the use of PAN. The nanospheres were characterized with respect to their spectral properties (quantum yields of the luminophores, brightness, luminescence decay time), stability in aqueous buffered suspensions, and in terms of size, shape, and surface charge of the particles, as well as storage stability, quenching by oxygen, and dye leaching.
ISSN:1043-1802
1520-4812
DOI:10.1021/bc000130x