Loading…
The enhanced LBG algorithm
Clustering applications cover several fields such as audio and video data compression, pattern recognition, computer vision, medical image recognition, etc. In this paper, we present a new clustering algorithm called Enhanced LBG (ELBG). It belongs to the hard and K-means vector quantization groups...
Saved in:
Published in: | Neural networks 2001-11, Vol.14 (9), p.1219-1237 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-c83231a794df2041fbfe00e8c69a3b0d2d317f9bbac1f199fdc89436c546d8fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-c83231a794df2041fbfe00e8c69a3b0d2d317f9bbac1f199fdc89436c546d8fd3 |
container_end_page | 1237 |
container_issue | 9 |
container_start_page | 1219 |
container_title | Neural networks |
container_volume | 14 |
creator | Patané, Giuseppe Russo, Marco |
description | Clustering applications cover several fields such as audio and video data compression, pattern recognition, computer vision, medical image recognition, etc. In this paper, we present a new clustering algorithm called Enhanced LBG (ELBG). It belongs to the hard and
K-means vector quantization groups and derives directly from the simpler LBG. The basic idea we have developed is the concept of utility of a codeword, a powerful instrument to overcome one of the main drawbacks of clustering algorithms: generally, the results achieved are not good in the case of a bad choice of the initial codebook. We will present our experimental results showing the ELBG is able to find better codebooks than previous clustering techniques and the computational complexity is virtually the same as the simpler LBG. |
doi_str_mv | 10.1016/S0893-6080(01)00104-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72298587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608001001046</els_id><sourcerecordid>26996546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-c83231a794df2041fbfe00e8c69a3b0d2d317f9bbac1f199fdc89436c546d8fd3</originalsourceid><addsrcrecordid>eNqFkE1PAjEURRujEUT_gImGjUYXo--1pdOujBJFExIX4rrp9EPGDIy2YOK_dwaILFm9zbn3vhxCzhBuEFDcvoFULBMg4QrwGgCBZ2KPdFHmKqO5pPuk-490yFFKnwAgJGeHpIOYo-SUdsnpZOr7fj41c-tdf_ww6pvqo47lYjo7JgfBVMmfbG6PvD89TobP2fh19DK8H2eWD3CRWckoQ5Mr7gIFjqEIHsBLK5RhBTjqGOZBFYWxGFCp4KxUnAk74MLJ4FiPXK57v2L9vfRpoWdlsr6qzNzXy6RzSpUcyHwnSIVSomltwMEatLFOKfqgv2I5M_FXI-jWnl7Z060aDahX9nSbO98MLIuZd9vURlcDXGwAk6ypQmy0lWnLcVCSsrbobs35xttP6aNOtvSt4jJ6u9CuLne88gd6_IkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26996546</pqid></control><display><type>article</type><title>The enhanced LBG algorithm</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Patané, Giuseppe ; Russo, Marco</creator><creatorcontrib>Patané, Giuseppe ; Russo, Marco</creatorcontrib><description>Clustering applications cover several fields such as audio and video data compression, pattern recognition, computer vision, medical image recognition, etc. In this paper, we present a new clustering algorithm called Enhanced LBG (ELBG). It belongs to the hard and
K-means vector quantization groups and derives directly from the simpler LBG. The basic idea we have developed is the concept of utility of a codeword, a powerful instrument to overcome one of the main drawbacks of clustering algorithms: generally, the results achieved are not good in the case of a bad choice of the initial codebook. We will present our experimental results showing the ELBG is able to find better codebooks than previous clustering techniques and the computational complexity is virtually the same as the simpler LBG.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(01)00104-6</identifier><identifier>PMID: 11718422</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Clustering ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Fuzzy c-means ; GLA ; Hard c-means ; Image Processing, Computer-Assisted - methods ; K-means ; LBG ; LVQ ; Neural Networks (Computer) ; Pattern recognition. Digital image processing. Computational geometry ; Stochastic Processes ; Unsupervised learning</subject><ispartof>Neural networks, 2001-11, Vol.14 (9), p.1219-1237</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-c83231a794df2041fbfe00e8c69a3b0d2d317f9bbac1f199fdc89436c546d8fd3</citedby><cites>FETCH-LOGICAL-c451t-c83231a794df2041fbfe00e8c69a3b0d2d317f9bbac1f199fdc89436c546d8fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14098236$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11718422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patané, Giuseppe</creatorcontrib><creatorcontrib>Russo, Marco</creatorcontrib><title>The enhanced LBG algorithm</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Clustering applications cover several fields such as audio and video data compression, pattern recognition, computer vision, medical image recognition, etc. In this paper, we present a new clustering algorithm called Enhanced LBG (ELBG). It belongs to the hard and
K-means vector quantization groups and derives directly from the simpler LBG. The basic idea we have developed is the concept of utility of a codeword, a powerful instrument to overcome one of the main drawbacks of clustering algorithms: generally, the results achieved are not good in the case of a bad choice of the initial codebook. We will present our experimental results showing the ELBG is able to find better codebooks than previous clustering techniques and the computational complexity is virtually the same as the simpler LBG.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Clustering</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Fuzzy c-means</subject><subject>GLA</subject><subject>Hard c-means</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>K-means</subject><subject>LBG</subject><subject>LVQ</subject><subject>Neural Networks (Computer)</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Stochastic Processes</subject><subject>Unsupervised learning</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEURRujEUT_gImGjUYXo--1pdOujBJFExIX4rrp9EPGDIy2YOK_dwaILFm9zbn3vhxCzhBuEFDcvoFULBMg4QrwGgCBZ2KPdFHmKqO5pPuk-490yFFKnwAgJGeHpIOYo-SUdsnpZOr7fj41c-tdf_ww6pvqo47lYjo7JgfBVMmfbG6PvD89TobP2fh19DK8H2eWD3CRWckoQ5Mr7gIFjqEIHsBLK5RhBTjqGOZBFYWxGFCp4KxUnAk74MLJ4FiPXK57v2L9vfRpoWdlsr6qzNzXy6RzSpUcyHwnSIVSomltwMEatLFOKfqgv2I5M_FXI-jWnl7Z060aDahX9nSbO98MLIuZd9vURlcDXGwAk6ypQmy0lWnLcVCSsrbobs35xttP6aNOtvSt4jJ6u9CuLne88gd6_IkY</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Patané, Giuseppe</creator><creator>Russo, Marco</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20011101</creationdate><title>The enhanced LBG algorithm</title><author>Patané, Giuseppe ; Russo, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-c83231a794df2041fbfe00e8c69a3b0d2d317f9bbac1f199fdc89436c546d8fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Clustering</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Fuzzy c-means</topic><topic>GLA</topic><topic>Hard c-means</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>K-means</topic><topic>LBG</topic><topic>LVQ</topic><topic>Neural Networks (Computer)</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Stochastic Processes</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patané, Giuseppe</creatorcontrib><creatorcontrib>Russo, Marco</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patané, Giuseppe</au><au>Russo, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The enhanced LBG algorithm</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2001-11-01</date><risdate>2001</risdate><volume>14</volume><issue>9</issue><spage>1219</spage><epage>1237</epage><pages>1219-1237</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Clustering applications cover several fields such as audio and video data compression, pattern recognition, computer vision, medical image recognition, etc. In this paper, we present a new clustering algorithm called Enhanced LBG (ELBG). It belongs to the hard and
K-means vector quantization groups and derives directly from the simpler LBG. The basic idea we have developed is the concept of utility of a codeword, a powerful instrument to overcome one of the main drawbacks of clustering algorithms: generally, the results achieved are not good in the case of a bad choice of the initial codebook. We will present our experimental results showing the ELBG is able to find better codebooks than previous clustering techniques and the computational complexity is virtually the same as the simpler LBG.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>11718422</pmid><doi>10.1016/S0893-6080(01)00104-6</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2001-11, Vol.14 (9), p.1219-1237 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_72298587 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Algorithms Applied sciences Artificial intelligence Clustering Computer science control theory systems Connectionism. Neural networks Exact sciences and technology Fuzzy c-means GLA Hard c-means Image Processing, Computer-Assisted - methods K-means LBG LVQ Neural Networks (Computer) Pattern recognition. Digital image processing. Computational geometry Stochastic Processes Unsupervised learning |
title | The enhanced LBG algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20enhanced%20LBG%20algorithm&rft.jtitle=Neural%20networks&rft.au=Patan%C3%A9,%20Giuseppe&rft.date=2001-11-01&rft.volume=14&rft.issue=9&rft.spage=1219&rft.epage=1237&rft.pages=1219-1237&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(01)00104-6&rft_dat=%3Cproquest_cross%3E26996546%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-c83231a794df2041fbfe00e8c69a3b0d2d317f9bbac1f199fdc89436c546d8fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26996546&rft_id=info:pmid/11718422&rfr_iscdi=true |