Loading…
High Spatial Resolution Imaging with Near-Field Scanning Optical Microscopy in Liquids
The mechanism of tuning fork-based shear-force near-field scanning optical microscopy is investigated to determine optimal experimental conditions for imaging soft samples immersed in liquid. High feedback sensitivity and stability are obtained when only the fiber probe, i.e., excluding the tuning f...
Saved in:
Published in: | Analytical chemistry (Washington) 2001-11, Vol.73 (21), p.5015-5019 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mechanism of tuning fork-based shear-force near-field scanning optical microscopy is investigated to determine optimal experimental conditions for imaging soft samples immersed in liquid. High feedback sensitivity and stability are obtained when only the fiber probe, i.e., excluding the tuning fork prongs, is immersed in solution, which also avoids electrical shorting in conductive (i.e., buffer) solutions. Images of MEH-PPV were obtained with comparable spatial resolution in both air and water. High optical resolution (∼160 nm fwhm) was observed. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac010803k |