Loading…

Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection

This article presents a non-invasive, optical technique for measuring particulate flow within microfluidic channels. Confocal fluorescence detection is used to probe single fluorescently labeled microspheres (0.93 microm diameter) passing through a focused laser beam at a variety of flow rates (50 n...

Full description

Saved in:
Bibliographic Details
Published in:Analyst (London) 2001-11, Vol.126 (11), p.1953-1957
Main Authors: EDEL, Joshua B, HILL, Elisabeth K, DE MELLO, Andrew J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c296t-a72b0b32998608643c3996c9a80661692b775484cc330563179a8464adc7ce0b3
cites
container_end_page 1957
container_issue 11
container_start_page 1953
container_title Analyst (London)
container_volume 126
creator EDEL, Joshua B
HILL, Elisabeth K
DE MELLO, Andrew J
description This article presents a non-invasive, optical technique for measuring particulate flow within microfluidic channels. Confocal fluorescence detection is used to probe single fluorescently labeled microspheres (0.93 microm diameter) passing through a focused laser beam at a variety of flow rates (50 nL min(-1)-8 microL min(-1)). Simple statistical methods are subsequently used to investigate the resulting fluorescence bursts and generate velocity data for the flowing particles. Fluid manipulation is achieved by hydrodynamically pumping fluid through microchannels (150 microm wide and 50 microm deep) structured in a polydimethylsiloxane (PDMS) substrate. The mean fluorescence burst frequency is shown to be directly proportional to flow speed. Furthermore, the Poisson recurrence time and width of recovered autocorrelation curves is demonstrated to be inversely proportional to flow speed. The component-based confocal fluorescence detection system is simple and can be applied to a diversity of planar chip systems. In addition, velocity measurement only involves interrogation of the fluidic system at a single point along the flow stream, as opposed to more normal multiple-point measurements.
doi_str_mv 10.1039/b106559a
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72337312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72337312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-a72b0b32998608643c3996c9a80661692b775484cc330563179a8464adc7ce0b3</originalsourceid><addsrcrecordid>eNpFkE9LxDAQxYMo7roKfgLJRW_VpGmT5ijiP1jwol5LOp1qJE3WJkX22xtxxcsMw_ze8OYRcsrZJWdCX3WcybrWZo8suZBVUddls0-WjDFRlLKuFuQoxo88clazQ7LgXEnBlFiS9IougE1bOqKJ84Qj-kTDQDdmShZmZxLSwYUvaj0dLUxhcLPtLVB4N96ji3SO1r_Rn-KQboLNegh-CGBcVs5hwgjoAWmPCSHZ4I_JwWBcxJNdX5GXu9vnm4di_XT_eHO9LqDUMhVGlR3rRKl1I1kjKwFCawnaNExKLnXZKVVXTQUgBKul4CqvKlmZHhRgVq7Ixe_dzRQ-Z4ypHW324pzxGObYqlIIJXiZwbMdOHcj9u1msqOZtu1fThk43wEm5r-GyXiw8Z-rmMqZC_EN15R25g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72337312</pqid></control><display><type>article</type><title>Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection</title><source>Royal Society of Chemistry: Jisc Collections: Journals Archive 1841-2007 (2019-2023)</source><creator>EDEL, Joshua B ; HILL, Elisabeth K ; DE MELLO, Andrew J</creator><creatorcontrib>EDEL, Joshua B ; HILL, Elisabeth K ; DE MELLO, Andrew J</creatorcontrib><description>This article presents a non-invasive, optical technique for measuring particulate flow within microfluidic channels. Confocal fluorescence detection is used to probe single fluorescently labeled microspheres (0.93 microm diameter) passing through a focused laser beam at a variety of flow rates (50 nL min(-1)-8 microL min(-1)). Simple statistical methods are subsequently used to investigate the resulting fluorescence bursts and generate velocity data for the flowing particles. Fluid manipulation is achieved by hydrodynamically pumping fluid through microchannels (150 microm wide and 50 microm deep) structured in a polydimethylsiloxane (PDMS) substrate. The mean fluorescence burst frequency is shown to be directly proportional to flow speed. Furthermore, the Poisson recurrence time and width of recovered autocorrelation curves is demonstrated to be inversely proportional to flow speed. The component-based confocal fluorescence detection system is simple and can be applied to a diversity of planar chip systems. In addition, velocity measurement only involves interrogation of the fluidic system at a single point along the flow stream, as opposed to more normal multiple-point measurements.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/b106559a</identifier><identifier>PMID: 11763073</identifier><identifier>CODEN: ANALAO</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Analytical chemistry ; Chemistry ; Exact sciences and technology ; Microscopy, Confocal ; Microspheres ; Motion ; Regional Blood Flow ; Spectrometric and optical methods</subject><ispartof>Analyst (London), 2001-11, Vol.126 (11), p.1953-1957</ispartof><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-a72b0b32998608643c3996c9a80661692b775484cc330563179a8464adc7ce0b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14075523$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11763073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>EDEL, Joshua B</creatorcontrib><creatorcontrib>HILL, Elisabeth K</creatorcontrib><creatorcontrib>DE MELLO, Andrew J</creatorcontrib><title>Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection</title><title>Analyst (London)</title><addtitle>Analyst</addtitle><description>This article presents a non-invasive, optical technique for measuring particulate flow within microfluidic channels. Confocal fluorescence detection is used to probe single fluorescently labeled microspheres (0.93 microm diameter) passing through a focused laser beam at a variety of flow rates (50 nL min(-1)-8 microL min(-1)). Simple statistical methods are subsequently used to investigate the resulting fluorescence bursts and generate velocity data for the flowing particles. Fluid manipulation is achieved by hydrodynamically pumping fluid through microchannels (150 microm wide and 50 microm deep) structured in a polydimethylsiloxane (PDMS) substrate. The mean fluorescence burst frequency is shown to be directly proportional to flow speed. Furthermore, the Poisson recurrence time and width of recovered autocorrelation curves is demonstrated to be inversely proportional to flow speed. The component-based confocal fluorescence detection system is simple and can be applied to a diversity of planar chip systems. In addition, velocity measurement only involves interrogation of the fluidic system at a single point along the flow stream, as opposed to more normal multiple-point measurements.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Microscopy, Confocal</subject><subject>Microspheres</subject><subject>Motion</subject><subject>Regional Blood Flow</subject><subject>Spectrometric and optical methods</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LxDAQxYMo7roKfgLJRW_VpGmT5ijiP1jwol5LOp1qJE3WJkX22xtxxcsMw_ze8OYRcsrZJWdCX3WcybrWZo8suZBVUddls0-WjDFRlLKuFuQoxo88clazQ7LgXEnBlFiS9IougE1bOqKJ84Qj-kTDQDdmShZmZxLSwYUvaj0dLUxhcLPtLVB4N96ji3SO1r_Rn-KQboLNegh-CGBcVs5hwgjoAWmPCSHZ4I_JwWBcxJNdX5GXu9vnm4di_XT_eHO9LqDUMhVGlR3rRKl1I1kjKwFCawnaNExKLnXZKVVXTQUgBKul4CqvKlmZHhRgVq7Ixe_dzRQ-Z4ypHW324pzxGObYqlIIJXiZwbMdOHcj9u1msqOZtu1fThk43wEm5r-GyXiw8Z-rmMqZC_EN15R25g</recordid><startdate>200111</startdate><enddate>200111</enddate><creator>EDEL, Joshua B</creator><creator>HILL, Elisabeth K</creator><creator>DE MELLO, Andrew J</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200111</creationdate><title>Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection</title><author>EDEL, Joshua B ; HILL, Elisabeth K ; DE MELLO, Andrew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-a72b0b32998608643c3996c9a80661692b775484cc330563179a8464adc7ce0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Microscopy, Confocal</topic><topic>Microspheres</topic><topic>Motion</topic><topic>Regional Blood Flow</topic><topic>Spectrometric and optical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EDEL, Joshua B</creatorcontrib><creatorcontrib>HILL, Elisabeth K</creatorcontrib><creatorcontrib>DE MELLO, Andrew J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EDEL, Joshua B</au><au>HILL, Elisabeth K</au><au>DE MELLO, Andrew J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection</atitle><jtitle>Analyst (London)</jtitle><addtitle>Analyst</addtitle><date>2001-11</date><risdate>2001</risdate><volume>126</volume><issue>11</issue><spage>1953</spage><epage>1957</epage><pages>1953-1957</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><coden>ANALAO</coden><abstract>This article presents a non-invasive, optical technique for measuring particulate flow within microfluidic channels. Confocal fluorescence detection is used to probe single fluorescently labeled microspheres (0.93 microm diameter) passing through a focused laser beam at a variety of flow rates (50 nL min(-1)-8 microL min(-1)). Simple statistical methods are subsequently used to investigate the resulting fluorescence bursts and generate velocity data for the flowing particles. Fluid manipulation is achieved by hydrodynamically pumping fluid through microchannels (150 microm wide and 50 microm deep) structured in a polydimethylsiloxane (PDMS) substrate. The mean fluorescence burst frequency is shown to be directly proportional to flow speed. Furthermore, the Poisson recurrence time and width of recovered autocorrelation curves is demonstrated to be inversely proportional to flow speed. The component-based confocal fluorescence detection system is simple and can be applied to a diversity of planar chip systems. In addition, velocity measurement only involves interrogation of the fluidic system at a single point along the flow stream, as opposed to more normal multiple-point measurements.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>11763073</pmid><doi>10.1039/b106559a</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2654
ispartof Analyst (London), 2001-11, Vol.126 (11), p.1953-1957
issn 0003-2654
1364-5528
language eng
recordid cdi_proquest_miscellaneous_72337312
source Royal Society of Chemistry: Jisc Collections: Journals Archive 1841-2007 (2019-2023)
subjects Analytical chemistry
Chemistry
Exact sciences and technology
Microscopy, Confocal
Microspheres
Motion
Regional Blood Flow
Spectrometric and optical methods
title Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Velocity%20measurement%20of%20particulate%20flow%20in%20microfluidic%20channels%20using%20single%20point%20confocal%20fluorescence%20detection&rft.jtitle=Analyst%20(London)&rft.au=EDEL,%20Joshua%20B&rft.date=2001-11&rft.volume=126&rft.issue=11&rft.spage=1953&rft.epage=1957&rft.pages=1953-1957&rft.issn=0003-2654&rft.eissn=1364-5528&rft.coden=ANALAO&rft_id=info:doi/10.1039/b106559a&rft_dat=%3Cproquest_pubme%3E72337312%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-a72b0b32998608643c3996c9a80661692b775484cc330563179a8464adc7ce0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72337312&rft_id=info:pmid/11763073&rfr_iscdi=true