Loading…
Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection
This article presents a non-invasive, optical technique for measuring particulate flow within microfluidic channels. Confocal fluorescence detection is used to probe single fluorescently labeled microspheres (0.93 microm diameter) passing through a focused laser beam at a variety of flow rates (50 n...
Saved in:
Published in: | Analyst (London) 2001-11, Vol.126 (11), p.1953-1957 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c296t-a72b0b32998608643c3996c9a80661692b775484cc330563179a8464adc7ce0b3 |
---|---|
cites | |
container_end_page | 1957 |
container_issue | 11 |
container_start_page | 1953 |
container_title | Analyst (London) |
container_volume | 126 |
creator | EDEL, Joshua B HILL, Elisabeth K DE MELLO, Andrew J |
description | This article presents a non-invasive, optical technique for measuring particulate flow within microfluidic channels. Confocal fluorescence detection is used to probe single fluorescently labeled microspheres (0.93 microm diameter) passing through a focused laser beam at a variety of flow rates (50 nL min(-1)-8 microL min(-1)). Simple statistical methods are subsequently used to investigate the resulting fluorescence bursts and generate velocity data for the flowing particles. Fluid manipulation is achieved by hydrodynamically pumping fluid through microchannels (150 microm wide and 50 microm deep) structured in a polydimethylsiloxane (PDMS) substrate. The mean fluorescence burst frequency is shown to be directly proportional to flow speed. Furthermore, the Poisson recurrence time and width of recovered autocorrelation curves is demonstrated to be inversely proportional to flow speed. The component-based confocal fluorescence detection system is simple and can be applied to a diversity of planar chip systems. In addition, velocity measurement only involves interrogation of the fluidic system at a single point along the flow stream, as opposed to more normal multiple-point measurements. |
doi_str_mv | 10.1039/b106559a |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72337312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72337312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-a72b0b32998608643c3996c9a80661692b775484cc330563179a8464adc7ce0b3</originalsourceid><addsrcrecordid>eNpFkE9LxDAQxYMo7roKfgLJRW_VpGmT5ijiP1jwol5LOp1qJE3WJkX22xtxxcsMw_ze8OYRcsrZJWdCX3WcybrWZo8suZBVUddls0-WjDFRlLKuFuQoxo88clazQ7LgXEnBlFiS9IougE1bOqKJ84Qj-kTDQDdmShZmZxLSwYUvaj0dLUxhcLPtLVB4N96ji3SO1r_Rn-KQboLNegh-CGBcVs5hwgjoAWmPCSHZ4I_JwWBcxJNdX5GXu9vnm4di_XT_eHO9LqDUMhVGlR3rRKl1I1kjKwFCawnaNExKLnXZKVVXTQUgBKul4CqvKlmZHhRgVq7Ixe_dzRQ-Z4ypHW324pzxGObYqlIIJXiZwbMdOHcj9u1msqOZtu1fThk43wEm5r-GyXiw8Z-rmMqZC_EN15R25g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72337312</pqid></control><display><type>article</type><title>Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection</title><source>Royal Society of Chemistry: Jisc Collections: Journals Archive 1841-2007 (2019-2023)</source><creator>EDEL, Joshua B ; HILL, Elisabeth K ; DE MELLO, Andrew J</creator><creatorcontrib>EDEL, Joshua B ; HILL, Elisabeth K ; DE MELLO, Andrew J</creatorcontrib><description>This article presents a non-invasive, optical technique for measuring particulate flow within microfluidic channels. Confocal fluorescence detection is used to probe single fluorescently labeled microspheres (0.93 microm diameter) passing through a focused laser beam at a variety of flow rates (50 nL min(-1)-8 microL min(-1)). Simple statistical methods are subsequently used to investigate the resulting fluorescence bursts and generate velocity data for the flowing particles. Fluid manipulation is achieved by hydrodynamically pumping fluid through microchannels (150 microm wide and 50 microm deep) structured in a polydimethylsiloxane (PDMS) substrate. The mean fluorescence burst frequency is shown to be directly proportional to flow speed. Furthermore, the Poisson recurrence time and width of recovered autocorrelation curves is demonstrated to be inversely proportional to flow speed. The component-based confocal fluorescence detection system is simple and can be applied to a diversity of planar chip systems. In addition, velocity measurement only involves interrogation of the fluidic system at a single point along the flow stream, as opposed to more normal multiple-point measurements.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/b106559a</identifier><identifier>PMID: 11763073</identifier><identifier>CODEN: ANALAO</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Analytical chemistry ; Chemistry ; Exact sciences and technology ; Microscopy, Confocal ; Microspheres ; Motion ; Regional Blood Flow ; Spectrometric and optical methods</subject><ispartof>Analyst (London), 2001-11, Vol.126 (11), p.1953-1957</ispartof><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-a72b0b32998608643c3996c9a80661692b775484cc330563179a8464adc7ce0b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14075523$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11763073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>EDEL, Joshua B</creatorcontrib><creatorcontrib>HILL, Elisabeth K</creatorcontrib><creatorcontrib>DE MELLO, Andrew J</creatorcontrib><title>Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection</title><title>Analyst (London)</title><addtitle>Analyst</addtitle><description>This article presents a non-invasive, optical technique for measuring particulate flow within microfluidic channels. Confocal fluorescence detection is used to probe single fluorescently labeled microspheres (0.93 microm diameter) passing through a focused laser beam at a variety of flow rates (50 nL min(-1)-8 microL min(-1)). Simple statistical methods are subsequently used to investigate the resulting fluorescence bursts and generate velocity data for the flowing particles. Fluid manipulation is achieved by hydrodynamically pumping fluid through microchannels (150 microm wide and 50 microm deep) structured in a polydimethylsiloxane (PDMS) substrate. The mean fluorescence burst frequency is shown to be directly proportional to flow speed. Furthermore, the Poisson recurrence time and width of recovered autocorrelation curves is demonstrated to be inversely proportional to flow speed. The component-based confocal fluorescence detection system is simple and can be applied to a diversity of planar chip systems. In addition, velocity measurement only involves interrogation of the fluidic system at a single point along the flow stream, as opposed to more normal multiple-point measurements.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Microscopy, Confocal</subject><subject>Microspheres</subject><subject>Motion</subject><subject>Regional Blood Flow</subject><subject>Spectrometric and optical methods</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LxDAQxYMo7roKfgLJRW_VpGmT5ijiP1jwol5LOp1qJE3WJkX22xtxxcsMw_ze8OYRcsrZJWdCX3WcybrWZo8suZBVUddls0-WjDFRlLKuFuQoxo88clazQ7LgXEnBlFiS9IougE1bOqKJ84Qj-kTDQDdmShZmZxLSwYUvaj0dLUxhcLPtLVB4N96ji3SO1r_Rn-KQboLNegh-CGBcVs5hwgjoAWmPCSHZ4I_JwWBcxJNdX5GXu9vnm4di_XT_eHO9LqDUMhVGlR3rRKl1I1kjKwFCawnaNExKLnXZKVVXTQUgBKul4CqvKlmZHhRgVq7Ixe_dzRQ-Z4ypHW324pzxGObYqlIIJXiZwbMdOHcj9u1msqOZtu1fThk43wEm5r-GyXiw8Z-rmMqZC_EN15R25g</recordid><startdate>200111</startdate><enddate>200111</enddate><creator>EDEL, Joshua B</creator><creator>HILL, Elisabeth K</creator><creator>DE MELLO, Andrew J</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200111</creationdate><title>Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection</title><author>EDEL, Joshua B ; HILL, Elisabeth K ; DE MELLO, Andrew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-a72b0b32998608643c3996c9a80661692b775484cc330563179a8464adc7ce0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Microscopy, Confocal</topic><topic>Microspheres</topic><topic>Motion</topic><topic>Regional Blood Flow</topic><topic>Spectrometric and optical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EDEL, Joshua B</creatorcontrib><creatorcontrib>HILL, Elisabeth K</creatorcontrib><creatorcontrib>DE MELLO, Andrew J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EDEL, Joshua B</au><au>HILL, Elisabeth K</au><au>DE MELLO, Andrew J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection</atitle><jtitle>Analyst (London)</jtitle><addtitle>Analyst</addtitle><date>2001-11</date><risdate>2001</risdate><volume>126</volume><issue>11</issue><spage>1953</spage><epage>1957</epage><pages>1953-1957</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><coden>ANALAO</coden><abstract>This article presents a non-invasive, optical technique for measuring particulate flow within microfluidic channels. Confocal fluorescence detection is used to probe single fluorescently labeled microspheres (0.93 microm diameter) passing through a focused laser beam at a variety of flow rates (50 nL min(-1)-8 microL min(-1)). Simple statistical methods are subsequently used to investigate the resulting fluorescence bursts and generate velocity data for the flowing particles. Fluid manipulation is achieved by hydrodynamically pumping fluid through microchannels (150 microm wide and 50 microm deep) structured in a polydimethylsiloxane (PDMS) substrate. The mean fluorescence burst frequency is shown to be directly proportional to flow speed. Furthermore, the Poisson recurrence time and width of recovered autocorrelation curves is demonstrated to be inversely proportional to flow speed. The component-based confocal fluorescence detection system is simple and can be applied to a diversity of planar chip systems. In addition, velocity measurement only involves interrogation of the fluidic system at a single point along the flow stream, as opposed to more normal multiple-point measurements.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>11763073</pmid><doi>10.1039/b106559a</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2654 |
ispartof | Analyst (London), 2001-11, Vol.126 (11), p.1953-1957 |
issn | 0003-2654 1364-5528 |
language | eng |
recordid | cdi_proquest_miscellaneous_72337312 |
source | Royal Society of Chemistry: Jisc Collections: Journals Archive 1841-2007 (2019-2023) |
subjects | Analytical chemistry Chemistry Exact sciences and technology Microscopy, Confocal Microspheres Motion Regional Blood Flow Spectrometric and optical methods |
title | Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Velocity%20measurement%20of%20particulate%20flow%20in%20microfluidic%20channels%20using%20single%20point%20confocal%20fluorescence%20detection&rft.jtitle=Analyst%20(London)&rft.au=EDEL,%20Joshua%20B&rft.date=2001-11&rft.volume=126&rft.issue=11&rft.spage=1953&rft.epage=1957&rft.pages=1953-1957&rft.issn=0003-2654&rft.eissn=1364-5528&rft.coden=ANALAO&rft_id=info:doi/10.1039/b106559a&rft_dat=%3Cproquest_pubme%3E72337312%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-a72b0b32998608643c3996c9a80661692b775484cc330563179a8464adc7ce0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72337312&rft_id=info:pmid/11763073&rfr_iscdi=true |