Loading…

Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo

The overlap of two wave packets evolving in time with slightly different Hamiltonians decays exponentially approximate to e(-gammat), for perturbation strengths U greater than the level spacing Delta. We present numerical evidence for a dynamical system that the decay rate gamma is given by the smal...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2001-11, Vol.64 (5 Pt 2), p.055203-055203
Main Authors: Jacquod, P, Silvestrov, P G, Beenakker, C W
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c413t-a6e01328d8e27c507f6840546408909d432db23c615e667275d54d834d2a34d53
cites
container_end_page 055203
container_issue 5 Pt 2
container_start_page 055203
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 64
creator Jacquod, P
Silvestrov, P G
Beenakker, C W
description The overlap of two wave packets evolving in time with slightly different Hamiltonians decays exponentially approximate to e(-gammat), for perturbation strengths U greater than the level spacing Delta. We present numerical evidence for a dynamical system that the decay rate gamma is given by the smallest of the Lyapunov exponent lambda of the classical chaotic dynamics and the level broadening U(2)/Delta that follows from the golden rule of quantum mechanics. This implies the range of validity U > the square root of [lambdaDelta] for the perturbation-strength independent decay rate discovered by Jalabert and Pastawski [Phys. Rev. Lett. 86, 2490 (2001)].
doi_str_mv 10.1103/PhysRevE.64.055203
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72343533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72343533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-a6e01328d8e27c507f6840546408909d432db23c615e667275d54d834d2a34d53</originalsourceid><addsrcrecordid>eNo1j11LwzAYhXOhuDn9A15IrrzrTPLmo7uUMadQUESvS5a8o5W26Zpm0H_vYPPmPHB4OHAIeeBsyTmD589qil943Cy1XDKlBIMrMucKVhkYpWbkNsZfxkBALm_IjHMDmjE-J5ttaDx2dEgNUo_OTvSIQ0yRFpPtUxeOlzbs6VghPSTbjamlRYiuams_UnRVuCPXe9tEvL9wQX5eN9_rt6z42L6vX4rMSQ5jZjUyDiL3OQrjFDN7nUumpJYsX7GVlyD8ToDTXKHWRhjllfQ5SC_sKRQsyNN5tx_CIWEcy7aODpvGdhhSLI0ACQrgJD5exLRr0Zf9ULd2mMr_4_AHgjJYTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72343533</pqid></control><display><type>article</type><title>Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Jacquod, P ; Silvestrov, P G ; Beenakker, C W</creator><creatorcontrib>Jacquod, P ; Silvestrov, P G ; Beenakker, C W</creatorcontrib><description>The overlap of two wave packets evolving in time with slightly different Hamiltonians decays exponentially approximate to e(-gammat), for perturbation strengths U greater than the level spacing Delta. We present numerical evidence for a dynamical system that the decay rate gamma is given by the smallest of the Lyapunov exponent lambda of the classical chaotic dynamics and the level broadening U(2)/Delta that follows from the golden rule of quantum mechanics. This implies the range of validity U &gt; the square root of [lambdaDelta] for the perturbation-strength independent decay rate discovered by Jalabert and Pastawski [Phys. Rev. Lett. 86, 2490 (2001)].</description><identifier>ISSN: 1539-3755</identifier><identifier>DOI: 10.1103/PhysRevE.64.055203</identifier><identifier>PMID: 11736001</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2001-11, Vol.64 (5 Pt 2), p.055203-055203</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-a6e01328d8e27c507f6840546408909d432db23c615e667275d54d834d2a34d53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11736001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacquod, P</creatorcontrib><creatorcontrib>Silvestrov, P G</creatorcontrib><creatorcontrib>Beenakker, C W</creatorcontrib><title>Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>The overlap of two wave packets evolving in time with slightly different Hamiltonians decays exponentially approximate to e(-gammat), for perturbation strengths U greater than the level spacing Delta. We present numerical evidence for a dynamical system that the decay rate gamma is given by the smallest of the Lyapunov exponent lambda of the classical chaotic dynamics and the level broadening U(2)/Delta that follows from the golden rule of quantum mechanics. This implies the range of validity U &gt; the square root of [lambdaDelta] for the perturbation-strength independent decay rate discovered by Jalabert and Pastawski [Phys. Rev. Lett. 86, 2490 (2001)].</description><issn>1539-3755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNo1j11LwzAYhXOhuDn9A15IrrzrTPLmo7uUMadQUESvS5a8o5W26Zpm0H_vYPPmPHB4OHAIeeBsyTmD589qil943Cy1XDKlBIMrMucKVhkYpWbkNsZfxkBALm_IjHMDmjE-J5ttaDx2dEgNUo_OTvSIQ0yRFpPtUxeOlzbs6VghPSTbjamlRYiuams_UnRVuCPXe9tEvL9wQX5eN9_rt6z42L6vX4rMSQ5jZjUyDiL3OQrjFDN7nUumpJYsX7GVlyD8ToDTXKHWRhjllfQ5SC_sKRQsyNN5tx_CIWEcy7aODpvGdhhSLI0ACQrgJD5exLRr0Zf9ULd2mMr_4_AHgjJYTw</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Jacquod, P</creator><creator>Silvestrov, P G</creator><creator>Beenakker, C W</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20011101</creationdate><title>Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo</title><author>Jacquod, P ; Silvestrov, P G ; Beenakker, C W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-a6e01328d8e27c507f6840546408909d432db23c615e667275d54d834d2a34d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Jacquod, P</creatorcontrib><creatorcontrib>Silvestrov, P G</creatorcontrib><creatorcontrib>Beenakker, C W</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacquod, P</au><au>Silvestrov, P G</au><au>Beenakker, C W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2001-11-01</date><risdate>2001</risdate><volume>64</volume><issue>5 Pt 2</issue><spage>055203</spage><epage>055203</epage><pages>055203-055203</pages><issn>1539-3755</issn><abstract>The overlap of two wave packets evolving in time with slightly different Hamiltonians decays exponentially approximate to e(-gammat), for perturbation strengths U greater than the level spacing Delta. We present numerical evidence for a dynamical system that the decay rate gamma is given by the smallest of the Lyapunov exponent lambda of the classical chaotic dynamics and the level broadening U(2)/Delta that follows from the golden rule of quantum mechanics. This implies the range of validity U &gt; the square root of [lambdaDelta] for the perturbation-strength independent decay rate discovered by Jalabert and Pastawski [Phys. Rev. Lett. 86, 2490 (2001)].</abstract><cop>United States</cop><pmid>11736001</pmid><doi>10.1103/PhysRevE.64.055203</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2001-11, Vol.64 (5 Pt 2), p.055203-055203
issn 1539-3755
language eng
recordid cdi_proquest_miscellaneous_72343533
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Golden%20rule%20decay%20versus%20Lyapunov%20decay%20of%20the%20quantum%20Loschmidt%20echo&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Jacquod,%20P&rft.date=2001-11-01&rft.volume=64&rft.issue=5%20Pt%202&rft.spage=055203&rft.epage=055203&rft.pages=055203-055203&rft.issn=1539-3755&rft_id=info:doi/10.1103/PhysRevE.64.055203&rft_dat=%3Cproquest_pubme%3E72343533%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-a6e01328d8e27c507f6840546408909d432db23c615e667275d54d834d2a34d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72343533&rft_id=info:pmid/11736001&rfr_iscdi=true