Loading…
Characterization of insulin-resistance: role of receptor alteration in insulin-dependent diabetes mellitus, essential hypertension and cardiac hypertrophy
Insulin-resistance is associated with a number of disease states such as diabetes, syndrome X, and hypertension. These situations may be coupled to insulin-resistance through the insulin signaling system as a common pathway. The purpose of this study was to investigate the receptor binding alteratio...
Saved in:
Published in: | European journal of pharmaceutical sciences 2000-10, Vol.11 (4), p.299-306 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Insulin-resistance is associated with a number of disease states such as diabetes, syndrome X, and hypertension. These situations may be coupled to insulin-resistance through the insulin signaling system as a common pathway. The purpose of this study was to investigate the receptor binding alterations in streptozotocin-induced diabetic rats, spontaneously hypertensive rats and aortocaval shunted rats (eccentric cardiac hypertrophy). A physical model describing a 1:1 stoichiometry of ligand binding with its receptor is proposed describing reversible binding of [
125I]insulin or [
125I]IGF-1 at the microvascular endothelial as well as with the cardiac myocytes after CHAPS-treatment. Analysis of the collected effluents are curve-fitted with a conservation equation and a first-order Bessel function which allowed the calculation of the forward binding constants (
k
n
), the reversible constants (
k
−
n
), the dissociation constants (
k
d) and the residency time constants (
τ). The results showed that streptozotocin-induced diabetic rats showed insulin-resistance through alterations in the kinetics of insulin receptor binding. The normotensive controls of the spontaneously hypertension rats (SHR) carry themselves insulin-resistant receptors whose binding to insulin worsens in the hypertensive SHR. Negative cooperativity between insulin-like growth factor IGF-1 and insulin receptors could be a causative factor predisposing for insulin-resistance in the aortocaval shunted rats to insulin resistance. The defects may be occurring at the receptor level in insulin-dependent diabetes mellitus, Wistar-Kyoto rats and spontaneously hypertensive rats. In conclusion, alterations in the kinetics of insulin binding to its receptor seem to play a central role for the initiation of insulin-resistance during the various pathophysiological states. |
---|---|
ISSN: | 0928-0987 1879-0720 |
DOI: | 10.1016/S0928-0987(00)00110-X |