Loading…

Anesthetic effects on mitochondrial ATP-sensitive K channel

Volatile anesthetics show an ischemic preconditioning-like cardioprotective effect, whereas intravenous anesthetics have cardioprotective effects for ischemic-reperfusion injury. Although recent evidence suggests that mitochondrial adenosine triphosphate-regulated potassium (mitoK(ATP)) channels are...

Full description

Saved in:
Bibliographic Details
Published in:Anesthesiology (Philadelphia) 2001-12, Vol.95 (6), p.1435-1440
Main Authors: KOHRO, Shinji, HOGAN, Quinn H, NAKAE, Yuri, YAMAKAGE, Michiaki, BOSNJAK, Zeljko J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c457t-d00b11413a609dd4e5916f8fb1db01eaf37cf230fe57b888e840195a3f077bb33
cites
container_end_page 1440
container_issue 6
container_start_page 1435
container_title Anesthesiology (Philadelphia)
container_volume 95
creator KOHRO, Shinji
HOGAN, Quinn H
NAKAE, Yuri
YAMAKAGE, Michiaki
BOSNJAK, Zeljko J
description Volatile anesthetics show an ischemic preconditioning-like cardioprotective effect, whereas intravenous anesthetics have cardioprotective effects for ischemic-reperfusion injury. Although recent evidence suggests that mitochondrial adenosine triphosphate-regulated potassium (mitoK(ATP)) channels are important in cardiac preconditioning, the effect of anesthetics on mitoK(ATP) is unexplored. Therefore, the authors tested the hypothesis that anesthetics act on the mitoK(ATP) channel and mitochondrial flavoprotein oxidation. Myocardial cells were isolated from adult guinea pigs. Endogenous mitochondrial flavoprotein fluorescence, an indicator of mitochondrial flavoprotein oxidation, was monitored with fluorescence microscopy while myocytes were exposed individually for 15 min to isoflurane, sevoflurane, propofol, and pentobarbital. The authors further investigated the effect of 5-hydroxydeanoate, a specific mitoK(ATP) channel antagonist, on isoflurane- and sevoflurane-induced flavoprotein oxidation. Additionally, the effects of propofol and pentobarbital on isoflurane-induced flavoprotein oxidation were measured. Isoflurane and sevoflurane induced dose-dependent increases in flavoprotein oxidation (isoflurane: R2 = 0.71, n = 50; sevoflurane: R2 = 0.86, n = 20). The fluorescence increase produced by both isoflurane and sevoflurane was eliminated by 5-hydroxydeanoate. Although propofol and pentobarbital showed no significant effects on flavoprotein oxidation, they both dose-dependently inhibited isoflurane-induced flavoprotein oxidation. Inhalational anesthetics induce flavoprotein oxidation through opening of the mitoK(ATP) channel. This may be an important mechanism contributing to anesthetic-induced preconditioning. Cardioprotective effects of intravenous anesthetics may not be dependent on flavoprotein oxidation, but the administration of propofol or pentobarbital may potentially inhibit the cardioprotective effect of inhalational anesthetics.
doi_str_mv 10.1097/00000542-200112000-00024
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72364405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72364405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-d00b11413a609dd4e5916f8fb1db01eaf37cf230fe57b888e840195a3f077bb33</originalsourceid><addsrcrecordid>eNpFkMtOAyEUQInR2Fr9BTMb3aFcHoWJq6bxFZvooq4Jw0CKmTJ1mJr491I7WhK4Ac595CBUALkBUspbsluCU0wJAcgHwXlTfoTGIKjCAFIco3F-Y5gRSkfoLKWPfJWCqVM0yv9cccLG6G4WXepXrg-2cN4726eijcU69K1dtbHugmmK2fINJxdT6MOXK14KuzIxuuYcnXjTJHcxxAl6f7hfzp_w4vXxeT5bYMuF7HFNSAXAgZkpKeuaO1HC1CtfQV0RcMYzaT1lxDshK6WUy5NBKQzzRMqqYmyCrvd1N137uc3j6nVI1jWNia7dJi0pm3JORAbVHrRdm1LnvN50YW26bw1E78TpP3H6X5z-FZdTL4ce22rt6kPiYCoDVwNgkjWN70y0IR04DlAqVrIfEQp0Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72364405</pqid></control><display><type>article</type><title>Anesthetic effects on mitochondrial ATP-sensitive K channel</title><source>HEAL-Link subscriptions: Lippincott Williams &amp; Wilkins</source><creator>KOHRO, Shinji ; HOGAN, Quinn H ; NAKAE, Yuri ; YAMAKAGE, Michiaki ; BOSNJAK, Zeljko J</creator><creatorcontrib>KOHRO, Shinji ; HOGAN, Quinn H ; NAKAE, Yuri ; YAMAKAGE, Michiaki ; BOSNJAK, Zeljko J</creatorcontrib><description>Volatile anesthetics show an ischemic preconditioning-like cardioprotective effect, whereas intravenous anesthetics have cardioprotective effects for ischemic-reperfusion injury. Although recent evidence suggests that mitochondrial adenosine triphosphate-regulated potassium (mitoK(ATP)) channels are important in cardiac preconditioning, the effect of anesthetics on mitoK(ATP) is unexplored. Therefore, the authors tested the hypothesis that anesthetics act on the mitoK(ATP) channel and mitochondrial flavoprotein oxidation. Myocardial cells were isolated from adult guinea pigs. Endogenous mitochondrial flavoprotein fluorescence, an indicator of mitochondrial flavoprotein oxidation, was monitored with fluorescence microscopy while myocytes were exposed individually for 15 min to isoflurane, sevoflurane, propofol, and pentobarbital. The authors further investigated the effect of 5-hydroxydeanoate, a specific mitoK(ATP) channel antagonist, on isoflurane- and sevoflurane-induced flavoprotein oxidation. Additionally, the effects of propofol and pentobarbital on isoflurane-induced flavoprotein oxidation were measured. Isoflurane and sevoflurane induced dose-dependent increases in flavoprotein oxidation (isoflurane: R2 = 0.71, n = 50; sevoflurane: R2 = 0.86, n = 20). The fluorescence increase produced by both isoflurane and sevoflurane was eliminated by 5-hydroxydeanoate. Although propofol and pentobarbital showed no significant effects on flavoprotein oxidation, they both dose-dependently inhibited isoflurane-induced flavoprotein oxidation. Inhalational anesthetics induce flavoprotein oxidation through opening of the mitoK(ATP) channel. This may be an important mechanism contributing to anesthetic-induced preconditioning. Cardioprotective effects of intravenous anesthetics may not be dependent on flavoprotein oxidation, but the administration of propofol or pentobarbital may potentially inhibit the cardioprotective effect of inhalational anesthetics.</description><identifier>ISSN: 0003-3022</identifier><identifier>EISSN: 1528-1175</identifier><identifier>DOI: 10.1097/00000542-200112000-00024</identifier><identifier>PMID: 11748403</identifier><identifier>CODEN: ANESAV</identifier><language>eng</language><publisher>Hagerstown, MD: Lippincott</publisher><subject>Adjuvants, Anesthesia - pharmacology ; Anesthetics, Inhalation - pharmacology ; Anesthetics, Intravenous ; Anesthetics. Neuromuscular blocking agents ; Animals ; ATP-Binding Cassette Transporters ; Biological and medical sciences ; Decanoic Acids - pharmacology ; Diazoxide - pharmacology ; Diuretics ; Dose-Response Relationship, Drug ; Electron Transport - drug effects ; Flavoproteins - metabolism ; Guinea Pigs ; Hydroxy Acids - pharmacology ; In Vitro Techniques ; Isoflurane - pharmacology ; KATP Channels ; Medical sciences ; Methyl Ethers - pharmacology ; Mitochondria, Heart - drug effects ; Mitochondria, Heart - metabolism ; Neuropharmacology ; Oxidation-Reduction ; Pentobarbital - pharmacology ; Pharmacology. Drug treatments ; Potassium Channel Blockers ; Potassium Channels - drug effects ; Potassium Channels, Inwardly Rectifying ; Propofol - pharmacology ; Sevoflurane ; Sodium Chloride Symporter Inhibitors - pharmacology</subject><ispartof>Anesthesiology (Philadelphia), 2001-12, Vol.95 (6), p.1435-1440</ispartof><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-d00b11413a609dd4e5916f8fb1db01eaf37cf230fe57b888e840195a3f077bb33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14119839$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11748403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>KOHRO, Shinji</creatorcontrib><creatorcontrib>HOGAN, Quinn H</creatorcontrib><creatorcontrib>NAKAE, Yuri</creatorcontrib><creatorcontrib>YAMAKAGE, Michiaki</creatorcontrib><creatorcontrib>BOSNJAK, Zeljko J</creatorcontrib><title>Anesthetic effects on mitochondrial ATP-sensitive K channel</title><title>Anesthesiology (Philadelphia)</title><addtitle>Anesthesiology</addtitle><description>Volatile anesthetics show an ischemic preconditioning-like cardioprotective effect, whereas intravenous anesthetics have cardioprotective effects for ischemic-reperfusion injury. Although recent evidence suggests that mitochondrial adenosine triphosphate-regulated potassium (mitoK(ATP)) channels are important in cardiac preconditioning, the effect of anesthetics on mitoK(ATP) is unexplored. Therefore, the authors tested the hypothesis that anesthetics act on the mitoK(ATP) channel and mitochondrial flavoprotein oxidation. Myocardial cells were isolated from adult guinea pigs. Endogenous mitochondrial flavoprotein fluorescence, an indicator of mitochondrial flavoprotein oxidation, was monitored with fluorescence microscopy while myocytes were exposed individually for 15 min to isoflurane, sevoflurane, propofol, and pentobarbital. The authors further investigated the effect of 5-hydroxydeanoate, a specific mitoK(ATP) channel antagonist, on isoflurane- and sevoflurane-induced flavoprotein oxidation. Additionally, the effects of propofol and pentobarbital on isoflurane-induced flavoprotein oxidation were measured. Isoflurane and sevoflurane induced dose-dependent increases in flavoprotein oxidation (isoflurane: R2 = 0.71, n = 50; sevoflurane: R2 = 0.86, n = 20). The fluorescence increase produced by both isoflurane and sevoflurane was eliminated by 5-hydroxydeanoate. Although propofol and pentobarbital showed no significant effects on flavoprotein oxidation, they both dose-dependently inhibited isoflurane-induced flavoprotein oxidation. Inhalational anesthetics induce flavoprotein oxidation through opening of the mitoK(ATP) channel. This may be an important mechanism contributing to anesthetic-induced preconditioning. Cardioprotective effects of intravenous anesthetics may not be dependent on flavoprotein oxidation, but the administration of propofol or pentobarbital may potentially inhibit the cardioprotective effect of inhalational anesthetics.</description><subject>Adjuvants, Anesthesia - pharmacology</subject><subject>Anesthetics, Inhalation - pharmacology</subject><subject>Anesthetics, Intravenous</subject><subject>Anesthetics. Neuromuscular blocking agents</subject><subject>Animals</subject><subject>ATP-Binding Cassette Transporters</subject><subject>Biological and medical sciences</subject><subject>Decanoic Acids - pharmacology</subject><subject>Diazoxide - pharmacology</subject><subject>Diuretics</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electron Transport - drug effects</subject><subject>Flavoproteins - metabolism</subject><subject>Guinea Pigs</subject><subject>Hydroxy Acids - pharmacology</subject><subject>In Vitro Techniques</subject><subject>Isoflurane - pharmacology</subject><subject>KATP Channels</subject><subject>Medical sciences</subject><subject>Methyl Ethers - pharmacology</subject><subject>Mitochondria, Heart - drug effects</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Neuropharmacology</subject><subject>Oxidation-Reduction</subject><subject>Pentobarbital - pharmacology</subject><subject>Pharmacology. Drug treatments</subject><subject>Potassium Channel Blockers</subject><subject>Potassium Channels - drug effects</subject><subject>Potassium Channels, Inwardly Rectifying</subject><subject>Propofol - pharmacology</subject><subject>Sevoflurane</subject><subject>Sodium Chloride Symporter Inhibitors - pharmacology</subject><issn>0003-3022</issn><issn>1528-1175</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOAyEUQInR2Fr9BTMb3aFcHoWJq6bxFZvooq4Jw0CKmTJ1mJr491I7WhK4Ac595CBUALkBUspbsluCU0wJAcgHwXlTfoTGIKjCAFIco3F-Y5gRSkfoLKWPfJWCqVM0yv9cccLG6G4WXepXrg-2cN4726eijcU69K1dtbHugmmK2fINJxdT6MOXK14KuzIxuuYcnXjTJHcxxAl6f7hfzp_w4vXxeT5bYMuF7HFNSAXAgZkpKeuaO1HC1CtfQV0RcMYzaT1lxDshK6WUy5NBKQzzRMqqYmyCrvd1N137uc3j6nVI1jWNia7dJi0pm3JORAbVHrRdm1LnvN50YW26bw1E78TpP3H6X5z-FZdTL4ce22rt6kPiYCoDVwNgkjWN70y0IR04DlAqVrIfEQp0Lg</recordid><startdate>20011201</startdate><enddate>20011201</enddate><creator>KOHRO, Shinji</creator><creator>HOGAN, Quinn H</creator><creator>NAKAE, Yuri</creator><creator>YAMAKAGE, Michiaki</creator><creator>BOSNJAK, Zeljko J</creator><general>Lippincott</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20011201</creationdate><title>Anesthetic effects on mitochondrial ATP-sensitive K channel</title><author>KOHRO, Shinji ; HOGAN, Quinn H ; NAKAE, Yuri ; YAMAKAGE, Michiaki ; BOSNJAK, Zeljko J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-d00b11413a609dd4e5916f8fb1db01eaf37cf230fe57b888e840195a3f077bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adjuvants, Anesthesia - pharmacology</topic><topic>Anesthetics, Inhalation - pharmacology</topic><topic>Anesthetics, Intravenous</topic><topic>Anesthetics. Neuromuscular blocking agents</topic><topic>Animals</topic><topic>ATP-Binding Cassette Transporters</topic><topic>Biological and medical sciences</topic><topic>Decanoic Acids - pharmacology</topic><topic>Diazoxide - pharmacology</topic><topic>Diuretics</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electron Transport - drug effects</topic><topic>Flavoproteins - metabolism</topic><topic>Guinea Pigs</topic><topic>Hydroxy Acids - pharmacology</topic><topic>In Vitro Techniques</topic><topic>Isoflurane - pharmacology</topic><topic>KATP Channels</topic><topic>Medical sciences</topic><topic>Methyl Ethers - pharmacology</topic><topic>Mitochondria, Heart - drug effects</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Neuropharmacology</topic><topic>Oxidation-Reduction</topic><topic>Pentobarbital - pharmacology</topic><topic>Pharmacology. Drug treatments</topic><topic>Potassium Channel Blockers</topic><topic>Potassium Channels - drug effects</topic><topic>Potassium Channels, Inwardly Rectifying</topic><topic>Propofol - pharmacology</topic><topic>Sevoflurane</topic><topic>Sodium Chloride Symporter Inhibitors - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KOHRO, Shinji</creatorcontrib><creatorcontrib>HOGAN, Quinn H</creatorcontrib><creatorcontrib>NAKAE, Yuri</creatorcontrib><creatorcontrib>YAMAKAGE, Michiaki</creatorcontrib><creatorcontrib>BOSNJAK, Zeljko J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Anesthesiology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KOHRO, Shinji</au><au>HOGAN, Quinn H</au><au>NAKAE, Yuri</au><au>YAMAKAGE, Michiaki</au><au>BOSNJAK, Zeljko J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anesthetic effects on mitochondrial ATP-sensitive K channel</atitle><jtitle>Anesthesiology (Philadelphia)</jtitle><addtitle>Anesthesiology</addtitle><date>2001-12-01</date><risdate>2001</risdate><volume>95</volume><issue>6</issue><spage>1435</spage><epage>1440</epage><pages>1435-1440</pages><issn>0003-3022</issn><eissn>1528-1175</eissn><coden>ANESAV</coden><abstract>Volatile anesthetics show an ischemic preconditioning-like cardioprotective effect, whereas intravenous anesthetics have cardioprotective effects for ischemic-reperfusion injury. Although recent evidence suggests that mitochondrial adenosine triphosphate-regulated potassium (mitoK(ATP)) channels are important in cardiac preconditioning, the effect of anesthetics on mitoK(ATP) is unexplored. Therefore, the authors tested the hypothesis that anesthetics act on the mitoK(ATP) channel and mitochondrial flavoprotein oxidation. Myocardial cells were isolated from adult guinea pigs. Endogenous mitochondrial flavoprotein fluorescence, an indicator of mitochondrial flavoprotein oxidation, was monitored with fluorescence microscopy while myocytes were exposed individually for 15 min to isoflurane, sevoflurane, propofol, and pentobarbital. The authors further investigated the effect of 5-hydroxydeanoate, a specific mitoK(ATP) channel antagonist, on isoflurane- and sevoflurane-induced flavoprotein oxidation. Additionally, the effects of propofol and pentobarbital on isoflurane-induced flavoprotein oxidation were measured. Isoflurane and sevoflurane induced dose-dependent increases in flavoprotein oxidation (isoflurane: R2 = 0.71, n = 50; sevoflurane: R2 = 0.86, n = 20). The fluorescence increase produced by both isoflurane and sevoflurane was eliminated by 5-hydroxydeanoate. Although propofol and pentobarbital showed no significant effects on flavoprotein oxidation, they both dose-dependently inhibited isoflurane-induced flavoprotein oxidation. Inhalational anesthetics induce flavoprotein oxidation through opening of the mitoK(ATP) channel. This may be an important mechanism contributing to anesthetic-induced preconditioning. Cardioprotective effects of intravenous anesthetics may not be dependent on flavoprotein oxidation, but the administration of propofol or pentobarbital may potentially inhibit the cardioprotective effect of inhalational anesthetics.</abstract><cop>Hagerstown, MD</cop><pub>Lippincott</pub><pmid>11748403</pmid><doi>10.1097/00000542-200112000-00024</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-3022
ispartof Anesthesiology (Philadelphia), 2001-12, Vol.95 (6), p.1435-1440
issn 0003-3022
1528-1175
language eng
recordid cdi_proquest_miscellaneous_72364405
source HEAL-Link subscriptions: Lippincott Williams & Wilkins
subjects Adjuvants, Anesthesia - pharmacology
Anesthetics, Inhalation - pharmacology
Anesthetics, Intravenous
Anesthetics. Neuromuscular blocking agents
Animals
ATP-Binding Cassette Transporters
Biological and medical sciences
Decanoic Acids - pharmacology
Diazoxide - pharmacology
Diuretics
Dose-Response Relationship, Drug
Electron Transport - drug effects
Flavoproteins - metabolism
Guinea Pigs
Hydroxy Acids - pharmacology
In Vitro Techniques
Isoflurane - pharmacology
KATP Channels
Medical sciences
Methyl Ethers - pharmacology
Mitochondria, Heart - drug effects
Mitochondria, Heart - metabolism
Neuropharmacology
Oxidation-Reduction
Pentobarbital - pharmacology
Pharmacology. Drug treatments
Potassium Channel Blockers
Potassium Channels - drug effects
Potassium Channels, Inwardly Rectifying
Propofol - pharmacology
Sevoflurane
Sodium Chloride Symporter Inhibitors - pharmacology
title Anesthetic effects on mitochondrial ATP-sensitive K channel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anesthetic%20effects%20on%20mitochondrial%20ATP-sensitive%20K%20channel&rft.jtitle=Anesthesiology%20(Philadelphia)&rft.au=KOHRO,%20Shinji&rft.date=2001-12-01&rft.volume=95&rft.issue=6&rft.spage=1435&rft.epage=1440&rft.pages=1435-1440&rft.issn=0003-3022&rft.eissn=1528-1175&rft.coden=ANESAV&rft_id=info:doi/10.1097/00000542-200112000-00024&rft_dat=%3Cproquest_cross%3E72364405%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c457t-d00b11413a609dd4e5916f8fb1db01eaf37cf230fe57b888e840195a3f077bb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72364405&rft_id=info:pmid/11748403&rfr_iscdi=true