Loading…
Multiple Regulatory Domains Control IRF-7 Activity in Response to Virus Infection
Recent studies implicate the interferon regulatory factors (IRF), IRF-3 and IRF-7, as key activators of Type 1 interferon genes, as well as the RANTES (regulated on activation normal T cell expressed) chemokine gene. Both IRF-3 and IRF-7 are regulated in part by virus-induced C-terminal phosphorylat...
Saved in:
Published in: | The Journal of biological chemistry 2000-11, Vol.275 (44), p.34320-34327 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent studies implicate the interferon regulatory factors (IRF), IRF-3 and IRF-7, as key activators of Type 1 interferon genes, as well as the RANTES (regulated on activation normal T cell expressed) chemokine gene. Both IRF-3 and IRF-7 are regulated in part by virus-induced C-terminal phosphorylation, leading to nuclear translocation, stimulation of DNA binding, and transcriptional activities. Structure-function studies with IRF-7 suggested a complex organization of the C-terminal region, with a constitutive activation domain located between amino acids 150–246, an accessory inducibility region at the very end of IRF-7 between amino acids 467 and 503, and an inhibitory region (amino acids 341–467) adjacent to the C-terminal end that interferes with transactivation. Furthermore, an element that increases basal and virus-inducible activity is located between amino acids 278 and 305. A transcriptionally active form of IRF-7 was also generated by substitution of Ser-477 and Ser-479 residues with the phosphomimetic Asp. IRF-7, particularly IRF-7(S477D/S479D), was a strong transactivator of type I interferon and RANTES chemokine gene expression. Unlike wild type IRF-3, IRF-7 overexpression was able to stimulate inteferon gene expression in the absence of virus infection. Using tagged versions of IRF-7 and IRF-3, the formation of homo- and heterodimers was detected by co-immunoprecipitation. These results demonstrate that IRF-3 and IRF-7 transcription factors possess distinct structural characteristics that impart complementary rather than redundant functional roles in cytokine gene activation. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M002814200 |