Loading…
A role for activin A and betacellulin in human fetal pancreatic cell differentiation and growth
Activin A (Act.A), a member of the transforming growth factor beta family of secreted proteins, has been implicated in the regulation of growth and differentiation of various cell types. Betacellulin (BTC), a member of the epidermal growth factor family, converts exocrine AR42J cells to insulin-expr...
Saved in:
Published in: | The journal of clinical endocrinology and metabolism 2000-10, Vol.85 (10), p.3892-3897 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Activin A (Act.A), a member of the transforming growth factor beta family of secreted proteins, has been implicated in the regulation of growth and differentiation of various cell types. Betacellulin (BTC), a member of the epidermal growth factor family, converts exocrine AR42J cells to insulin-expressing cells when combined with Act.A. We have used primary cultures of human fetal pancreatic tissue to identify the effects of Act.A and/or BTC on islet development and growth. Exposure to Act.A resulted in a 1.5-fold increase in insulin content (P < 0.005) and a 2-fold increase in the number of cells immunopositive for insulin (P < 0.005). The formation of islet-like cell clusters, containing mainly epithelial cells, during a 5-day culture, was stimulated 1.4-fold by BTC (P < 0.05). BTC alone caused a 2.6-fold increase in DNA synthesis (P < 0.005). These data suggest that Act.A induces endocrine differentiation, whereas BTC has a mitogenic effect on human undifferentiated pancreatic epithelial cells. |
---|---|
ISSN: | 0021-972X 1945-7197 |
DOI: | 10.1210/jc.85.10.3892 |