Loading…
MDR1 P-glycoprotein Reduces Influx of Substrates without Affecting Membrane Potential
MDR1(multidrug resistance) P-glycoprotein (Pgp; ABCB1) decreases intracellular concentrations of structurally diverse drugs. Although Pgp is generally thought to be an efflux transporter, the mechanism of action remains elusive. To determine whether Pgp confers drug resistance through changes in tra...
Saved in:
Published in: | The Journal of biological chemistry 2001-12, Vol.276 (52), p.49053-49060 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | MDR1(multidrug resistance) P-glycoprotein (Pgp; ABCB1) decreases intracellular concentrations of structurally diverse drugs. Although Pgp is generally thought to be an efflux transporter, the mechanism of action remains elusive. To determine whether Pgp confers drug resistance through changes in transmembrane potential (Em) or ion conductance, we studied electrical currents and drug transport in Pgp-negative MCF-7 cells and MCF-7/MDR1 stable transfectants that were established and maintained without chemotherapeutic drugs. AlthoughEm and total membrane conductance did not differ between MCF-7 and MCF-7/MDR1 cells, Pgp reduced unidirectional influx and steady-state cellular content of Tc-Sestamibi, a substrate for MDR1 Pgp, without affecting unidirectional efflux of substrate from cells. Depolarization of membrane potentials with various concentrations of extracellular K+ in the presence of valinomycin did not inhibit the ability of Pgp to reduce intracellular concentration of Tc-Sestamibi, strongly suggesting that the drug transport activity ofMDR1 Pgp is independent of changes inEm or total ion conductance. Tetraphenyl borate, a lipophilic anion, enhanced unidirectional influx of Tc-Sestamibi to a greater extent in MCF-7/MDR1 cells than in control cells, suggesting that Pgp may, directly or indirectly, increase the positive dipole potential within the plasma membrane bilayer. Overall, these data demonstrate that changes in Em or macroscopic conductance are not coupled with function of Pgp in multidrug resistance. The dominant effect of MDR1 Pgp in this system is reduction of drug influx, possibly through an increase in intramembranous dipole potential. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M105192200 |