Loading…

Broad antiviral activity in tissues of crustaceans

Innate antiviral substances occur in vertebrates and may function as host defenses. Virus infections are common among invertebrates, but little is known about the ability of invertebrates to control viral infections. Pre-existing antiviral substances may be particularly important, since invertebrate...

Full description

Saved in:
Bibliographic Details
Published in:Antiviral research 2000-10, Vol.48 (1), p.39-47
Main Authors: Pan, Jingzhi, Kurosky, Alexander, Xu, Bo, Chopra, Ashok K., Coppenhaver, Dorian H., Singh, Indra P., Baron, Samuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Innate antiviral substances occur in vertebrates and may function as host defenses. Virus infections are common among invertebrates, but little is known about the ability of invertebrates to control viral infections. Pre-existing antiviral substances may be particularly important, since invertebrates lack the antiviral defense conferred by specific immunity. In our study, we found that tissue extracts of blue crab ( Callinectes sapidus), shrimp ( Penaeus setiferus), and crayfish ( Procambarus clarkii) contained antiviral activities that inhibit a variety of DNA and RNA viruses, i.e. Sindbis virus (SB), vaccinia virus (VAC), vesicular stomatitis virus (VS), mengo virus (MENGO), banzi virus (BANZI) and poliomyelitis (POLIO). The concentration of inhibitory activity was relatively high, ranging from 102 to 216 U/g tissue for Sindbis virus, using the various tissue extracts. The other viruses were somewhat less sensitive to the inhibitor. The main antiviral activity in the inhibitor preparation from blue crab resided in an approximately 440 kDa fraction. It was inactivated significantly by lipid extraction, but not by proteinase K or glycosidases. The antiviral mechanism of the inhibitor from the blue crab was inhibition of virus attachment to eukaryotic cells, as evidenced by inhibitory activity at 4°C. These studies are among the first to show the existence of broadly active antiviral activities in aquatic crustaceans. These antiviral substances may function as innate host defenses in these species that lack specific antibody immunity and, therefore, merit further study.
ISSN:0166-3542
1872-9096
DOI:10.1016/S0166-3542(00)00117-0