Loading…

Rational Syntheses of Porphyrins Bearing up to Four Different Meso Substituents

Porphyrins bearing specific patterns of substituents are crucial building blocks in biomimetic and materials chemistry. We have developed methodology that avoids statistical reactions, employs minimal chromatography, and affords up to gram quantities of regioisomerically pure porphyrins bearing pred...

Full description

Saved in:
Bibliographic Details
Published in:Journal of organic chemistry 2000-11, Vol.65 (22), p.7323-7344
Main Authors: Rao, Polisetti Dharma, Dhanalekshmi, Savithri, Littler, Benjamin J, Lindsey, Jonathan S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Porphyrins bearing specific patterns of substituents are crucial building blocks in biomimetic and materials chemistry. We have developed methodology that avoids statistical reactions, employs minimal chromatography, and affords up to gram quantities of regioisomerically pure porphyrins bearing predesignated patterns of up to four different meso substituents. The methodology is based upon the availability of multigram quantities of dipyrromethanes. A procedure for the diacylation of dipyrromethanes using EtMgBr and an acid chloride has been refined. A new procedure for the preparation of unsymmetrical diacyl dipyrromethanes has been developed that involves (1) monoacylation with EtMgBr and a pyridyl benzothioate followed by (2) introduction of the second acyl unit upon reaction with EtMgBr and an acid chloride. The scope of these acylation methods has been examined by preparing multigram quantities of diacyl dipyrromethanes bearing a variety of substituents. Reduction of the diacyl dipyrromethane to the corresponding dipyrromethane-dicarbinol is achieved with NaBH4 in methanolic THF. Porphyrin formation involves the acid-catalyzed condensation of a dipyrromethane-dicarbinol and a dipyrromethane followed by oxidation with DDQ. Optimal conditions for the condensation were identified after examining various reaction parameters (solvent, temperature, acid, concentration, time). The conditions identified (2.5 mM reactants in acetonitrile containing 30 mM TFA at room temperature for 1-g quantities of three porphyrins.
ISSN:0022-3263
1520-6904
DOI:10.1021/jo000882k