Loading…
Tutorial in Biostatistics: Evaluating the impact of ‘critical periods’ in longitudinal studies of growth using piecewise mixed effects models
Recent developments in modern multivariate methods provide applied researchers with the means to address many important research questions that arise in studies with repeated measures data collected on individuals over time. One such area of applied research is focused on studying change associated...
Saved in:
Published in: | International journal of epidemiology 2001-12, Vol.30 (6), p.1332-1341 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-acdc1a856640326fe793389be4b7261dd838f3aac3f2c244fdba1c08f3ae5b873 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-acdc1a856640326fe793389be4b7261dd838f3aac3f2c244fdba1c08f3ae5b873 |
container_end_page | 1341 |
container_issue | 6 |
container_start_page | 1332 |
container_title | International journal of epidemiology |
container_volume | 30 |
creator | Naumova, Elena N Must, Aviva Laird, Nan M |
description | Recent developments in modern multivariate methods provide applied researchers with the means to address many important research questions that arise in studies with repeated measures data collected on individuals over time. One such area of applied research is focused on studying change associated with some event or critical period in human development. This tutorial deals with the use of the general linear mixed model for regression analysis of correlated data with a two-piece linear function of time corresponding to the pre- and post-event trends. The model assumes a continuous outcome is linearly related to a set of explanatory variables, but allows for the trend after the event to be different from the trend before it. This task can be accomplished using a piecewise linear random effects model for longitudinal data where the response depends upon time of the event. A detailed example that examines the influence of menarche on changes in body fat accretion will be presented using data from a prospective study of 162 girls measured annually from approximately age 10 until 4 years post menarche. |
doi_str_mv | 10.1093/ije/30.6.1332 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72427087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72427087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-acdc1a856640326fe793389be4b7261dd838f3aac3f2c244fdba1c08f3ae5b873</originalsourceid><addsrcrecordid>eNpdkc9u1DAQhy0EokvhyBVZHLhl639xEm5QSotUiUuBiovlOJOtlyROPQ4tt74CN3i9PgkJXVGJ03g83_yk0UfIc87WnFXywG_hQLK1XnMpxQOy4kqrTOoyf0hWTDKW5UXB98gTxC1jXClVPSZ7nJeCSyVW5OfZlEL0tqN-oG99wGSTx-QdvqZH3203ze2woekCqO9H6xINLb29-eWin6F5bYToQ4O3N7-XhC4MG5-mxg_zCJcH4LKxieEqXdAJl7DRg4Mrj0B7fw0NhbYFl5D2oYEOn5JHre0Qnu3qPvn0_ujs8CQ7_Xj84fDNaeaUYCmzrnHclrnWikmhWygqKcuqBlUXQvOmKWXZSmudbIUTSrVNbbljyx_kdVnIffLqLneM4XICTKb36KDr7ABhQlMIJQr2F3z5H7gNU5wPRCN4xRXTTM9Qdge5GBAjtGaMvrfxh-HMLKLMLMpIZrRZRM38i13oVPfQ3NM7M_eBsw24_je38ZvRhSxyc3L-1ZTVl2P-WZybd_IPv1Giuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219140606</pqid></control><display><type>article</type><title>Tutorial in Biostatistics: Evaluating the impact of ‘critical periods’ in longitudinal studies of growth using piecewise mixed effects models</title><source>Oxford Journals Online</source><creator>Naumova, Elena N ; Must, Aviva ; Laird, Nan M</creator><creatorcontrib>Naumova, Elena N ; Must, Aviva ; Laird, Nan M</creatorcontrib><description>Recent developments in modern multivariate methods provide applied researchers with the means to address many important research questions that arise in studies with repeated measures data collected on individuals over time. One such area of applied research is focused on studying change associated with some event or critical period in human development. This tutorial deals with the use of the general linear mixed model for regression analysis of correlated data with a two-piece linear function of time corresponding to the pre- and post-event trends. The model assumes a continuous outcome is linearly related to a set of explanatory variables, but allows for the trend after the event to be different from the trend before it. This task can be accomplished using a piecewise linear random effects model for longitudinal data where the response depends upon time of the event. A detailed example that examines the influence of menarche on changes in body fat accretion will be presented using data from a prospective study of 162 girls measured annually from approximately age 10 until 4 years post menarche.</description><identifier>ISSN: 0300-5771</identifier><identifier>EISSN: 1464-3685</identifier><identifier>DOI: 10.1093/ije/30.6.1332</identifier><identifier>PMID: 11821342</identifier><identifier>CODEN: IJEPBF</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adipose Tissue - physiology ; Child ; critical periods ; Epidemiologic Research Design ; fat accretion ; Female ; Growth ; Humans ; Least-Squares Analysis ; Linear Models ; longitudinal data ; Longitudinal Studies ; menarche ; Menarche - physiology ; mixed effects model ; obesity ; piecewise linear model ; random effects model</subject><ispartof>International journal of epidemiology, 2001-12, Vol.30 (6), p.1332-1341</ispartof><rights>Copyright Oxford University Press(England) Dec 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-acdc1a856640326fe793389be4b7261dd838f3aac3f2c244fdba1c08f3ae5b873</citedby><cites>FETCH-LOGICAL-c420t-acdc1a856640326fe793389be4b7261dd838f3aac3f2c244fdba1c08f3ae5b873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11821342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naumova, Elena N</creatorcontrib><creatorcontrib>Must, Aviva</creatorcontrib><creatorcontrib>Laird, Nan M</creatorcontrib><title>Tutorial in Biostatistics: Evaluating the impact of ‘critical periods’ in longitudinal studies of growth using piecewise mixed effects models</title><title>International journal of epidemiology</title><addtitle>Int. J. Epidemiol</addtitle><description>Recent developments in modern multivariate methods provide applied researchers with the means to address many important research questions that arise in studies with repeated measures data collected on individuals over time. One such area of applied research is focused on studying change associated with some event or critical period in human development. This tutorial deals with the use of the general linear mixed model for regression analysis of correlated data with a two-piece linear function of time corresponding to the pre- and post-event trends. The model assumes a continuous outcome is linearly related to a set of explanatory variables, but allows for the trend after the event to be different from the trend before it. This task can be accomplished using a piecewise linear random effects model for longitudinal data where the response depends upon time of the event. A detailed example that examines the influence of menarche on changes in body fat accretion will be presented using data from a prospective study of 162 girls measured annually from approximately age 10 until 4 years post menarche.</description><subject>Adipose Tissue - physiology</subject><subject>Child</subject><subject>critical periods</subject><subject>Epidemiologic Research Design</subject><subject>fat accretion</subject><subject>Female</subject><subject>Growth</subject><subject>Humans</subject><subject>Least-Squares Analysis</subject><subject>Linear Models</subject><subject>longitudinal data</subject><subject>Longitudinal Studies</subject><subject>menarche</subject><subject>Menarche - physiology</subject><subject>mixed effects model</subject><subject>obesity</subject><subject>piecewise linear model</subject><subject>random effects model</subject><issn>0300-5771</issn><issn>1464-3685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpdkc9u1DAQhy0EokvhyBVZHLhl639xEm5QSotUiUuBiovlOJOtlyROPQ4tt74CN3i9PgkJXVGJ03g83_yk0UfIc87WnFXywG_hQLK1XnMpxQOy4kqrTOoyf0hWTDKW5UXB98gTxC1jXClVPSZ7nJeCSyVW5OfZlEL0tqN-oG99wGSTx-QdvqZH3203ze2woekCqO9H6xINLb29-eWin6F5bYToQ4O3N7-XhC4MG5-mxg_zCJcH4LKxieEqXdAJl7DRg4Mrj0B7fw0NhbYFl5D2oYEOn5JHre0Qnu3qPvn0_ujs8CQ7_Xj84fDNaeaUYCmzrnHclrnWikmhWygqKcuqBlUXQvOmKWXZSmudbIUTSrVNbbljyx_kdVnIffLqLneM4XICTKb36KDr7ABhQlMIJQr2F3z5H7gNU5wPRCN4xRXTTM9Qdge5GBAjtGaMvrfxh-HMLKLMLMpIZrRZRM38i13oVPfQ3NM7M_eBsw24_je38ZvRhSxyc3L-1ZTVl2P-WZybd_IPv1Giuw</recordid><startdate>20011201</startdate><enddate>20011201</enddate><creator>Naumova, Elena N</creator><creator>Must, Aviva</creator><creator>Laird, Nan M</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20011201</creationdate><title>Tutorial in Biostatistics: Evaluating the impact of ‘critical periods’ in longitudinal studies of growth using piecewise mixed effects models</title><author>Naumova, Elena N ; Must, Aviva ; Laird, Nan M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-acdc1a856640326fe793389be4b7261dd838f3aac3f2c244fdba1c08f3ae5b873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adipose Tissue - physiology</topic><topic>Child</topic><topic>critical periods</topic><topic>Epidemiologic Research Design</topic><topic>fat accretion</topic><topic>Female</topic><topic>Growth</topic><topic>Humans</topic><topic>Least-Squares Analysis</topic><topic>Linear Models</topic><topic>longitudinal data</topic><topic>Longitudinal Studies</topic><topic>menarche</topic><topic>Menarche - physiology</topic><topic>mixed effects model</topic><topic>obesity</topic><topic>piecewise linear model</topic><topic>random effects model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naumova, Elena N</creatorcontrib><creatorcontrib>Must, Aviva</creatorcontrib><creatorcontrib>Laird, Nan M</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naumova, Elena N</au><au>Must, Aviva</au><au>Laird, Nan M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tutorial in Biostatistics: Evaluating the impact of ‘critical periods’ in longitudinal studies of growth using piecewise mixed effects models</atitle><jtitle>International journal of epidemiology</jtitle><addtitle>Int. J. Epidemiol</addtitle><date>2001-12-01</date><risdate>2001</risdate><volume>30</volume><issue>6</issue><spage>1332</spage><epage>1341</epage><pages>1332-1341</pages><issn>0300-5771</issn><eissn>1464-3685</eissn><coden>IJEPBF</coden><abstract>Recent developments in modern multivariate methods provide applied researchers with the means to address many important research questions that arise in studies with repeated measures data collected on individuals over time. One such area of applied research is focused on studying change associated with some event or critical period in human development. This tutorial deals with the use of the general linear mixed model for regression analysis of correlated data with a two-piece linear function of time corresponding to the pre- and post-event trends. The model assumes a continuous outcome is linearly related to a set of explanatory variables, but allows for the trend after the event to be different from the trend before it. This task can be accomplished using a piecewise linear random effects model for longitudinal data where the response depends upon time of the event. A detailed example that examines the influence of menarche on changes in body fat accretion will be presented using data from a prospective study of 162 girls measured annually from approximately age 10 until 4 years post menarche.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>11821342</pmid><doi>10.1093/ije/30.6.1332</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0300-5771 |
ispartof | International journal of epidemiology, 2001-12, Vol.30 (6), p.1332-1341 |
issn | 0300-5771 1464-3685 |
language | eng |
recordid | cdi_proquest_miscellaneous_72427087 |
source | Oxford Journals Online |
subjects | Adipose Tissue - physiology Child critical periods Epidemiologic Research Design fat accretion Female Growth Humans Least-Squares Analysis Linear Models longitudinal data Longitudinal Studies menarche Menarche - physiology mixed effects model obesity piecewise linear model random effects model |
title | Tutorial in Biostatistics: Evaluating the impact of ‘critical periods’ in longitudinal studies of growth using piecewise mixed effects models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tutorial%20in%20Biostatistics:%20Evaluating%20the%20impact%20of%20%E2%80%98critical%20periods%E2%80%99%20in%20longitudinal%20studies%20of%20growth%20using%20piecewise%20mixed%20effects%20models&rft.jtitle=International%20journal%20of%20epidemiology&rft.au=Naumova,%20Elena%20N&rft.date=2001-12-01&rft.volume=30&rft.issue=6&rft.spage=1332&rft.epage=1341&rft.pages=1332-1341&rft.issn=0300-5771&rft.eissn=1464-3685&rft.coden=IJEPBF&rft_id=info:doi/10.1093/ije/30.6.1332&rft_dat=%3Cproquest_cross%3E72427087%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-acdc1a856640326fe793389be4b7261dd838f3aac3f2c244fdba1c08f3ae5b873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=219140606&rft_id=info:pmid/11821342&rfr_iscdi=true |