Loading…

Tutorial in Biostatistics: Evaluating the impact of ‘critical periods’ in longitudinal studies of growth using piecewise mixed effects models

Recent developments in modern multivariate methods provide applied researchers with the means to address many important research questions that arise in studies with repeated measures data collected on individuals over time. One such area of applied research is focused on studying change associated...

Full description

Saved in:
Bibliographic Details
Published in:International journal of epidemiology 2001-12, Vol.30 (6), p.1332-1341
Main Authors: Naumova, Elena N, Must, Aviva, Laird, Nan M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-acdc1a856640326fe793389be4b7261dd838f3aac3f2c244fdba1c08f3ae5b873
cites cdi_FETCH-LOGICAL-c420t-acdc1a856640326fe793389be4b7261dd838f3aac3f2c244fdba1c08f3ae5b873
container_end_page 1341
container_issue 6
container_start_page 1332
container_title International journal of epidemiology
container_volume 30
creator Naumova, Elena N
Must, Aviva
Laird, Nan M
description Recent developments in modern multivariate methods provide applied researchers with the means to address many important research questions that arise in studies with repeated measures data collected on individuals over time. One such area of applied research is focused on studying change associated with some event or critical period in human development. This tutorial deals with the use of the general linear mixed model for regression analysis of correlated data with a two-piece linear function of time corresponding to the pre- and post-event trends. The model assumes a continuous outcome is linearly related to a set of explanatory variables, but allows for the trend after the event to be different from the trend before it. This task can be accomplished using a piecewise linear random effects model for longitudinal data where the response depends upon time of the event. A detailed example that examines the influence of menarche on changes in body fat accretion will be presented using data from a prospective study of 162 girls measured annually from approximately age 10 until 4 years post menarche.
doi_str_mv 10.1093/ije/30.6.1332
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72427087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72427087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-acdc1a856640326fe793389be4b7261dd838f3aac3f2c244fdba1c08f3ae5b873</originalsourceid><addsrcrecordid>eNpdkc9u1DAQhy0EokvhyBVZHLhl639xEm5QSotUiUuBiovlOJOtlyROPQ4tt74CN3i9PgkJXVGJ03g83_yk0UfIc87WnFXywG_hQLK1XnMpxQOy4kqrTOoyf0hWTDKW5UXB98gTxC1jXClVPSZ7nJeCSyVW5OfZlEL0tqN-oG99wGSTx-QdvqZH3203ze2woekCqO9H6xINLb29-eWin6F5bYToQ4O3N7-XhC4MG5-mxg_zCJcH4LKxieEqXdAJl7DRg4Mrj0B7fw0NhbYFl5D2oYEOn5JHre0Qnu3qPvn0_ujs8CQ7_Xj84fDNaeaUYCmzrnHclrnWikmhWygqKcuqBlUXQvOmKWXZSmudbIUTSrVNbbljyx_kdVnIffLqLneM4XICTKb36KDr7ABhQlMIJQr2F3z5H7gNU5wPRCN4xRXTTM9Qdge5GBAjtGaMvrfxh-HMLKLMLMpIZrRZRM38i13oVPfQ3NM7M_eBsw24_je38ZvRhSxyc3L-1ZTVl2P-WZybd_IPv1Giuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219140606</pqid></control><display><type>article</type><title>Tutorial in Biostatistics: Evaluating the impact of ‘critical periods’ in longitudinal studies of growth using piecewise mixed effects models</title><source>Oxford Journals Online</source><creator>Naumova, Elena N ; Must, Aviva ; Laird, Nan M</creator><creatorcontrib>Naumova, Elena N ; Must, Aviva ; Laird, Nan M</creatorcontrib><description>Recent developments in modern multivariate methods provide applied researchers with the means to address many important research questions that arise in studies with repeated measures data collected on individuals over time. One such area of applied research is focused on studying change associated with some event or critical period in human development. This tutorial deals with the use of the general linear mixed model for regression analysis of correlated data with a two-piece linear function of time corresponding to the pre- and post-event trends. The model assumes a continuous outcome is linearly related to a set of explanatory variables, but allows for the trend after the event to be different from the trend before it. This task can be accomplished using a piecewise linear random effects model for longitudinal data where the response depends upon time of the event. A detailed example that examines the influence of menarche on changes in body fat accretion will be presented using data from a prospective study of 162 girls measured annually from approximately age 10 until 4 years post menarche.</description><identifier>ISSN: 0300-5771</identifier><identifier>EISSN: 1464-3685</identifier><identifier>DOI: 10.1093/ije/30.6.1332</identifier><identifier>PMID: 11821342</identifier><identifier>CODEN: IJEPBF</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adipose Tissue - physiology ; Child ; critical periods ; Epidemiologic Research Design ; fat accretion ; Female ; Growth ; Humans ; Least-Squares Analysis ; Linear Models ; longitudinal data ; Longitudinal Studies ; menarche ; Menarche - physiology ; mixed effects model ; obesity ; piecewise linear model ; random effects model</subject><ispartof>International journal of epidemiology, 2001-12, Vol.30 (6), p.1332-1341</ispartof><rights>Copyright Oxford University Press(England) Dec 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-acdc1a856640326fe793389be4b7261dd838f3aac3f2c244fdba1c08f3ae5b873</citedby><cites>FETCH-LOGICAL-c420t-acdc1a856640326fe793389be4b7261dd838f3aac3f2c244fdba1c08f3ae5b873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11821342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naumova, Elena N</creatorcontrib><creatorcontrib>Must, Aviva</creatorcontrib><creatorcontrib>Laird, Nan M</creatorcontrib><title>Tutorial in Biostatistics: Evaluating the impact of ‘critical periods’ in longitudinal studies of growth using piecewise mixed effects models</title><title>International journal of epidemiology</title><addtitle>Int. J. Epidemiol</addtitle><description>Recent developments in modern multivariate methods provide applied researchers with the means to address many important research questions that arise in studies with repeated measures data collected on individuals over time. One such area of applied research is focused on studying change associated with some event or critical period in human development. This tutorial deals with the use of the general linear mixed model for regression analysis of correlated data with a two-piece linear function of time corresponding to the pre- and post-event trends. The model assumes a continuous outcome is linearly related to a set of explanatory variables, but allows for the trend after the event to be different from the trend before it. This task can be accomplished using a piecewise linear random effects model for longitudinal data where the response depends upon time of the event. A detailed example that examines the influence of menarche on changes in body fat accretion will be presented using data from a prospective study of 162 girls measured annually from approximately age 10 until 4 years post menarche.</description><subject>Adipose Tissue - physiology</subject><subject>Child</subject><subject>critical periods</subject><subject>Epidemiologic Research Design</subject><subject>fat accretion</subject><subject>Female</subject><subject>Growth</subject><subject>Humans</subject><subject>Least-Squares Analysis</subject><subject>Linear Models</subject><subject>longitudinal data</subject><subject>Longitudinal Studies</subject><subject>menarche</subject><subject>Menarche - physiology</subject><subject>mixed effects model</subject><subject>obesity</subject><subject>piecewise linear model</subject><subject>random effects model</subject><issn>0300-5771</issn><issn>1464-3685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpdkc9u1DAQhy0EokvhyBVZHLhl639xEm5QSotUiUuBiovlOJOtlyROPQ4tt74CN3i9PgkJXVGJ03g83_yk0UfIc87WnFXywG_hQLK1XnMpxQOy4kqrTOoyf0hWTDKW5UXB98gTxC1jXClVPSZ7nJeCSyVW5OfZlEL0tqN-oG99wGSTx-QdvqZH3203ze2woekCqO9H6xINLb29-eWin6F5bYToQ4O3N7-XhC4MG5-mxg_zCJcH4LKxieEqXdAJl7DRg4Mrj0B7fw0NhbYFl5D2oYEOn5JHre0Qnu3qPvn0_ujs8CQ7_Xj84fDNaeaUYCmzrnHclrnWikmhWygqKcuqBlUXQvOmKWXZSmudbIUTSrVNbbljyx_kdVnIffLqLneM4XICTKb36KDr7ABhQlMIJQr2F3z5H7gNU5wPRCN4xRXTTM9Qdge5GBAjtGaMvrfxh-HMLKLMLMpIZrRZRM38i13oVPfQ3NM7M_eBsw24_je38ZvRhSxyc3L-1ZTVl2P-WZybd_IPv1Giuw</recordid><startdate>20011201</startdate><enddate>20011201</enddate><creator>Naumova, Elena N</creator><creator>Must, Aviva</creator><creator>Laird, Nan M</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20011201</creationdate><title>Tutorial in Biostatistics: Evaluating the impact of ‘critical periods’ in longitudinal studies of growth using piecewise mixed effects models</title><author>Naumova, Elena N ; Must, Aviva ; Laird, Nan M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-acdc1a856640326fe793389be4b7261dd838f3aac3f2c244fdba1c08f3ae5b873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adipose Tissue - physiology</topic><topic>Child</topic><topic>critical periods</topic><topic>Epidemiologic Research Design</topic><topic>fat accretion</topic><topic>Female</topic><topic>Growth</topic><topic>Humans</topic><topic>Least-Squares Analysis</topic><topic>Linear Models</topic><topic>longitudinal data</topic><topic>Longitudinal Studies</topic><topic>menarche</topic><topic>Menarche - physiology</topic><topic>mixed effects model</topic><topic>obesity</topic><topic>piecewise linear model</topic><topic>random effects model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naumova, Elena N</creatorcontrib><creatorcontrib>Must, Aviva</creatorcontrib><creatorcontrib>Laird, Nan M</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naumova, Elena N</au><au>Must, Aviva</au><au>Laird, Nan M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tutorial in Biostatistics: Evaluating the impact of ‘critical periods’ in longitudinal studies of growth using piecewise mixed effects models</atitle><jtitle>International journal of epidemiology</jtitle><addtitle>Int. J. Epidemiol</addtitle><date>2001-12-01</date><risdate>2001</risdate><volume>30</volume><issue>6</issue><spage>1332</spage><epage>1341</epage><pages>1332-1341</pages><issn>0300-5771</issn><eissn>1464-3685</eissn><coden>IJEPBF</coden><abstract>Recent developments in modern multivariate methods provide applied researchers with the means to address many important research questions that arise in studies with repeated measures data collected on individuals over time. One such area of applied research is focused on studying change associated with some event or critical period in human development. This tutorial deals with the use of the general linear mixed model for regression analysis of correlated data with a two-piece linear function of time corresponding to the pre- and post-event trends. The model assumes a continuous outcome is linearly related to a set of explanatory variables, but allows for the trend after the event to be different from the trend before it. This task can be accomplished using a piecewise linear random effects model for longitudinal data where the response depends upon time of the event. A detailed example that examines the influence of menarche on changes in body fat accretion will be presented using data from a prospective study of 162 girls measured annually from approximately age 10 until 4 years post menarche.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>11821342</pmid><doi>10.1093/ije/30.6.1332</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0300-5771
ispartof International journal of epidemiology, 2001-12, Vol.30 (6), p.1332-1341
issn 0300-5771
1464-3685
language eng
recordid cdi_proquest_miscellaneous_72427087
source Oxford Journals Online
subjects Adipose Tissue - physiology
Child
critical periods
Epidemiologic Research Design
fat accretion
Female
Growth
Humans
Least-Squares Analysis
Linear Models
longitudinal data
Longitudinal Studies
menarche
Menarche - physiology
mixed effects model
obesity
piecewise linear model
random effects model
title Tutorial in Biostatistics: Evaluating the impact of ‘critical periods’ in longitudinal studies of growth using piecewise mixed effects models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tutorial%20in%20Biostatistics:%20Evaluating%20the%20impact%20of%20%E2%80%98critical%20periods%E2%80%99%20in%20longitudinal%20studies%20of%20growth%20using%20piecewise%20mixed%20effects%20models&rft.jtitle=International%20journal%20of%20epidemiology&rft.au=Naumova,%20Elena%20N&rft.date=2001-12-01&rft.volume=30&rft.issue=6&rft.spage=1332&rft.epage=1341&rft.pages=1332-1341&rft.issn=0300-5771&rft.eissn=1464-3685&rft.coden=IJEPBF&rft_id=info:doi/10.1093/ije/30.6.1332&rft_dat=%3Cproquest_cross%3E72427087%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-acdc1a856640326fe793389be4b7261dd838f3aac3f2c244fdba1c08f3ae5b873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=219140606&rft_id=info:pmid/11821342&rfr_iscdi=true