Loading…

Comparison of in vitro and in vivo methods to study stability of PLGA microencapsulated tetanus toxoid vaccines

The purpose of this study was to investigate the utility of various in vitro and in vivo methods to assess the stability of experimental vaccines containing tetanus toxoid (TT) within PLGA microspheres. In vitro, the breakdown of the encapsulating polymers into their acid components led to changes i...

Full description

Saved in:
Bibliographic Details
Published in:Vaccine 2000-11, Vol.19 (7), p.694-705
Main Authors: Sasiak, Anna B., Bolgiano, Barbara, Crane, Dennis T., Hockley, David J., Corbel, Michael J., Sesardic, Dorothea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of this study was to investigate the utility of various in vitro and in vivo methods to assess the stability of experimental vaccines containing tetanus toxoid (TT) within PLGA microspheres. In vitro, the breakdown of the encapsulating polymers into their acid components led to changes in the structure of TT, as determined by the physico-chemical methods, rendering it undetectable by capture ELISA and altering its structural integrity. The changes in TT were directly related to increasing acidity of the vaccine supernate. Purified toxoid (not encapsulated) exposed to low pH (2.5) underwent similar changes but re-neutralisation of buffer containing free toxoid, even after one week at pH 2.5 led to some re-folding of protein as determined by fluorescence spectroscopy and gel filtration chromatography. The microencapsulated vaccines were still able to generate an antibody response in mice even after prolonged pre-incubation at 37°C and the apparent absence of detectable toxoid in the vaccine supernate. Electron microscopy demonstrated differences in the amount of degradation between different formulations of microspheres. Vaccines that had retained their spherical morphology after incubation in vitro for up to 28 days were able to induce protective antibodies response equal to that of freshly prepared vaccines, which indicates that the toxoid within intact microspheres remained immunogenic. Immunochemical and physico-chemical detection methods, performed on antigen released from PLGA vaccines in vitro, are valuable in providing information on product characteristics but may not be able to predict effectiveness and should be used with in vivo methods to evaluate the stability of such formulations.
ISSN:0264-410X
1873-2518
DOI:10.1016/S0264-410X(00)00266-8