Loading…
Multidrug Resistance P-Glycoprotein Is Not Involved in Cholesterol Esterification
The aim of the present paper is to reinvestigate the role of multidrug resistance P-glycoprotein MDR1 and MDR-associated protein (MRP1) in cholesterol esterification using well-characterized inhibitors. Using specific substrate efflux assay, we show that GF120918 (0.2 μM) and probenecid (5 mM) were...
Saved in:
Published in: | Biochemical and biophysical research communications 2000-12, Vol.279 (2), p.369-377 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of the present paper is to reinvestigate the role of multidrug resistance P-glycoprotein MDR1 and MDR-associated protein (MRP1) in cholesterol esterification using well-characterized inhibitors. Using specific substrate efflux assay, we show that GF120918 (0.2 μM) and probenecid (5 mM) were specific inhibitors of MDR1 and MRP1, respectively. In HepG2 cells, neither of them affect the esterification of cholesterol derived from the uptake of cholesterol-rich lipoprotein, while both verapamil (100 μM) and progesterone (100 μM) were able to inhibit cholesterol esterification. Similar results were obtained with verapamil, progesterone, and GF120918 in the MDR1-overexpressing cells MCF7/ADR. The capacity of progesterone to reduce cholesterol esterification is not correlated with its ability to inhibit MDR1 but is rather due to direct inhibition of acyl-CoA:cholesterol acyltransferase (ACAT). We conclude that the esterification of cholesterol is not correlated with MDR1 or MRP1 activity, thus excluding their role in the intracellular transport of endocytosis-derived cholesterol. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1006/bbrc.2000.3939 |