Loading…

Subsecond Adsorption and Desorption of Dopamine at Carbon-Fiber Microelectrodes

High-repetition fast-scan cyclic voltammetry and chronoamperometry were used to quantify and characterize the kinetics of dopamine and dopamine-o-quinone adsorption and desorption at carbon-fiber microelectrodes. A flow injection analysis system was used for the precise introduction and removal of a...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2000-12, Vol.72 (24), p.5994-6002
Main Authors: Bath, Bradley D, Michael, Darren J, Trafton, B. Jill, Joseph, Joshua D, Runnels, Petrise L, Wightman, R. Mark
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a470t-e1ba8de3865cd79971267c3a6afd815f65f2f040ac75533734015a9d873a7a843
cites cdi_FETCH-LOGICAL-a470t-e1ba8de3865cd79971267c3a6afd815f65f2f040ac75533734015a9d873a7a843
container_end_page 6002
container_issue 24
container_start_page 5994
container_title Analytical chemistry (Washington)
container_volume 72
creator Bath, Bradley D
Michael, Darren J
Trafton, B. Jill
Joseph, Joshua D
Runnels, Petrise L
Wightman, R. Mark
description High-repetition fast-scan cyclic voltammetry and chronoamperometry were used to quantify and characterize the kinetics of dopamine and dopamine-o-quinone adsorption and desorption at carbon-fiber microelectrodes. A flow injection analysis system was used for the precise introduction and removal of a bolus of electroactive substance on a sub-second time scale to the disk-shaped surface of a microelectrode that was fabricated from a single carbon fiber (Thornel type T650 or P55). Pretreatment of the electrode surfaces consisted of soaking them in purified isopropyl alcohol for a minimum of 10 min, which resulted in S/N increasing by 200−400% for dopamine above that for those that were soaked in reagent grade solvent. Because of adsorption, high scan rates (2000 V/s) are shown to exhibit equivalent S/N ratios as compared to slower, more traditional scan rates. In addition, the steady-state response to a concentration bolus is shown to occur more rapidly when cyclic voltammetric scans are repeated at short intervals (4 ms). The new methodologies allow for more accurate determinations of the kinetics of neurotransmitter release events (10−500 ms) in biological systems. Brain slice and in vivo experiments using T650 cylinder microelectrodes show that voltammetrically measured uptake kinetics in the caudate are faster using 2000 V/s and 240 Hz measurements, as compared to 300 V/s and 10 Hz.
doi_str_mv 10.1021/ac000849y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72520965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66021975</sourcerecordid><originalsourceid>FETCH-LOGICAL-a470t-e1ba8de3865cd79971267c3a6afd815f65f2f040ac75533734015a9d873a7a843</originalsourceid><addsrcrecordid>eNpl0F1L5DAUBuAgKzp-XPgHlrKLghfVk-azlzLjqDCioF6H0zSFup1mNmlh_fdGZxhhvQoneTg55yXkhMIFhYJeogUAzcu3HTKhooBcal38IJN0y_JCAeyTgxhfASgFKvfIPqWUg5J6Qh6exio66_s6u6qjD6uh9X2GqZy5bembbOZXuGx7l-GQTTFUvs_nbeVCdt_a4F3n7BB87eIR2W2wi-54cx6Sl_n18_Q2Xzzc3E2vFjlyBUPuaIW6dkxLYWtVlooWUlmGEptaU9FI0RQNcECrhGBMMQ5UYFlrxVCh5uyQnK37roL_O7o4mGUbres67J0fo1FFyqGUIsFf_8FXP4Y-zWYKqrRUXMqEztco7RJjcI1ZhXaJ4c1QMB8Rm23Eyf7cNByrpau_5CbTBH5vAEaLXROwt23cOi05-_wyX6s2Du7f9hXDHyMVU8I8Pz4ZsbhnMANu5smfrj3a-LXC9_HeARTNnA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217867466</pqid></control><display><type>article</type><title>Subsecond Adsorption and Desorption of Dopamine at Carbon-Fiber Microelectrodes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Bath, Bradley D ; Michael, Darren J ; Trafton, B. Jill ; Joseph, Joshua D ; Runnels, Petrise L ; Wightman, R. Mark</creator><creatorcontrib>Bath, Bradley D ; Michael, Darren J ; Trafton, B. Jill ; Joseph, Joshua D ; Runnels, Petrise L ; Wightman, R. Mark</creatorcontrib><description>High-repetition fast-scan cyclic voltammetry and chronoamperometry were used to quantify and characterize the kinetics of dopamine and dopamine-o-quinone adsorption and desorption at carbon-fiber microelectrodes. A flow injection analysis system was used for the precise introduction and removal of a bolus of electroactive substance on a sub-second time scale to the disk-shaped surface of a microelectrode that was fabricated from a single carbon fiber (Thornel type T650 or P55). Pretreatment of the electrode surfaces consisted of soaking them in purified isopropyl alcohol for a minimum of 10 min, which resulted in S/N increasing by 200−400% for dopamine above that for those that were soaked in reagent grade solvent. Because of adsorption, high scan rates (2000 V/s) are shown to exhibit equivalent S/N ratios as compared to slower, more traditional scan rates. In addition, the steady-state response to a concentration bolus is shown to occur more rapidly when cyclic voltammetric scans are repeated at short intervals (4 ms). The new methodologies allow for more accurate determinations of the kinetics of neurotransmitter release events (10−500 ms) in biological systems. Brain slice and in vivo experiments using T650 cylinder microelectrodes show that voltammetrically measured uptake kinetics in the caudate are faster using 2000 V/s and 240 Hz measurements, as compared to 300 V/s and 10 Hz.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac000849y</identifier><identifier>PMID: 11140768</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Analytical, structural and metabolic biochemistry ; Animals ; Biological and medical sciences ; Brain Chemistry ; Carbon ; Carbon - chemistry ; Chemistry ; Dopamine - chemistry ; Electrons ; Fundamental and applied biological sciences. Psychology ; Kinetics ; Mice ; Microelectrodes ; Microscopy, Electron, Scanning ; Non peptidic neurotransmitters, polyamines ; Other biological molecules</subject><ispartof>Analytical chemistry (Washington), 2000-12, Vol.72 (24), p.5994-6002</ispartof><rights>Copyright © 2000 American Chemical Society</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Chemical Society Dec 15, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a470t-e1ba8de3865cd79971267c3a6afd815f65f2f040ac75533734015a9d873a7a843</citedby><cites>FETCH-LOGICAL-a470t-e1ba8de3865cd79971267c3a6afd815f65f2f040ac75533734015a9d873a7a843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=864366$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11140768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bath, Bradley D</creatorcontrib><creatorcontrib>Michael, Darren J</creatorcontrib><creatorcontrib>Trafton, B. Jill</creatorcontrib><creatorcontrib>Joseph, Joshua D</creatorcontrib><creatorcontrib>Runnels, Petrise L</creatorcontrib><creatorcontrib>Wightman, R. Mark</creatorcontrib><title>Subsecond Adsorption and Desorption of Dopamine at Carbon-Fiber Microelectrodes</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>High-repetition fast-scan cyclic voltammetry and chronoamperometry were used to quantify and characterize the kinetics of dopamine and dopamine-o-quinone adsorption and desorption at carbon-fiber microelectrodes. A flow injection analysis system was used for the precise introduction and removal of a bolus of electroactive substance on a sub-second time scale to the disk-shaped surface of a microelectrode that was fabricated from a single carbon fiber (Thornel type T650 or P55). Pretreatment of the electrode surfaces consisted of soaking them in purified isopropyl alcohol for a minimum of 10 min, which resulted in S/N increasing by 200−400% for dopamine above that for those that were soaked in reagent grade solvent. Because of adsorption, high scan rates (2000 V/s) are shown to exhibit equivalent S/N ratios as compared to slower, more traditional scan rates. In addition, the steady-state response to a concentration bolus is shown to occur more rapidly when cyclic voltammetric scans are repeated at short intervals (4 ms). The new methodologies allow for more accurate determinations of the kinetics of neurotransmitter release events (10−500 ms) in biological systems. Brain slice and in vivo experiments using T650 cylinder microelectrodes show that voltammetrically measured uptake kinetics in the caudate are faster using 2000 V/s and 240 Hz measurements, as compared to 300 V/s and 10 Hz.</description><subject>Adsorption</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Brain Chemistry</subject><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Chemistry</subject><subject>Dopamine - chemistry</subject><subject>Electrons</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Kinetics</subject><subject>Mice</subject><subject>Microelectrodes</subject><subject>Microscopy, Electron, Scanning</subject><subject>Non peptidic neurotransmitters, polyamines</subject><subject>Other biological molecules</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpl0F1L5DAUBuAgKzp-XPgHlrKLghfVk-azlzLjqDCioF6H0zSFup1mNmlh_fdGZxhhvQoneTg55yXkhMIFhYJeogUAzcu3HTKhooBcal38IJN0y_JCAeyTgxhfASgFKvfIPqWUg5J6Qh6exio66_s6u6qjD6uh9X2GqZy5bembbOZXuGx7l-GQTTFUvs_nbeVCdt_a4F3n7BB87eIR2W2wi-54cx6Sl_n18_Q2Xzzc3E2vFjlyBUPuaIW6dkxLYWtVlooWUlmGEptaU9FI0RQNcECrhGBMMQ5UYFlrxVCh5uyQnK37roL_O7o4mGUbres67J0fo1FFyqGUIsFf_8FXP4Y-zWYKqrRUXMqEztco7RJjcI1ZhXaJ4c1QMB8Rm23Eyf7cNByrpau_5CbTBH5vAEaLXROwt23cOi05-_wyX6s2Du7f9hXDHyMVU8I8Pz4ZsbhnMANu5smfrj3a-LXC9_HeARTNnA0</recordid><startdate>20001215</startdate><enddate>20001215</enddate><creator>Bath, Bradley D</creator><creator>Michael, Darren J</creator><creator>Trafton, B. Jill</creator><creator>Joseph, Joshua D</creator><creator>Runnels, Petrise L</creator><creator>Wightman, R. Mark</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20001215</creationdate><title>Subsecond Adsorption and Desorption of Dopamine at Carbon-Fiber Microelectrodes</title><author>Bath, Bradley D ; Michael, Darren J ; Trafton, B. Jill ; Joseph, Joshua D ; Runnels, Petrise L ; Wightman, R. Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a470t-e1ba8de3865cd79971267c3a6afd815f65f2f040ac75533734015a9d873a7a843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adsorption</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Brain Chemistry</topic><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Chemistry</topic><topic>Dopamine - chemistry</topic><topic>Electrons</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Kinetics</topic><topic>Mice</topic><topic>Microelectrodes</topic><topic>Microscopy, Electron, Scanning</topic><topic>Non peptidic neurotransmitters, polyamines</topic><topic>Other biological molecules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bath, Bradley D</creatorcontrib><creatorcontrib>Michael, Darren J</creatorcontrib><creatorcontrib>Trafton, B. Jill</creatorcontrib><creatorcontrib>Joseph, Joshua D</creatorcontrib><creatorcontrib>Runnels, Petrise L</creatorcontrib><creatorcontrib>Wightman, R. Mark</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bath, Bradley D</au><au>Michael, Darren J</au><au>Trafton, B. Jill</au><au>Joseph, Joshua D</au><au>Runnels, Petrise L</au><au>Wightman, R. Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subsecond Adsorption and Desorption of Dopamine at Carbon-Fiber Microelectrodes</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2000-12-15</date><risdate>2000</risdate><volume>72</volume><issue>24</issue><spage>5994</spage><epage>6002</epage><pages>5994-6002</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>High-repetition fast-scan cyclic voltammetry and chronoamperometry were used to quantify and characterize the kinetics of dopamine and dopamine-o-quinone adsorption and desorption at carbon-fiber microelectrodes. A flow injection analysis system was used for the precise introduction and removal of a bolus of electroactive substance on a sub-second time scale to the disk-shaped surface of a microelectrode that was fabricated from a single carbon fiber (Thornel type T650 or P55). Pretreatment of the electrode surfaces consisted of soaking them in purified isopropyl alcohol for a minimum of 10 min, which resulted in S/N increasing by 200−400% for dopamine above that for those that were soaked in reagent grade solvent. Because of adsorption, high scan rates (2000 V/s) are shown to exhibit equivalent S/N ratios as compared to slower, more traditional scan rates. In addition, the steady-state response to a concentration bolus is shown to occur more rapidly when cyclic voltammetric scans are repeated at short intervals (4 ms). The new methodologies allow for more accurate determinations of the kinetics of neurotransmitter release events (10−500 ms) in biological systems. Brain slice and in vivo experiments using T650 cylinder microelectrodes show that voltammetrically measured uptake kinetics in the caudate are faster using 2000 V/s and 240 Hz measurements, as compared to 300 V/s and 10 Hz.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>11140768</pmid><doi>10.1021/ac000849y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2000-12, Vol.72 (24), p.5994-6002
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_72520965
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Adsorption
Analytical, structural and metabolic biochemistry
Animals
Biological and medical sciences
Brain Chemistry
Carbon
Carbon - chemistry
Chemistry
Dopamine - chemistry
Electrons
Fundamental and applied biological sciences. Psychology
Kinetics
Mice
Microelectrodes
Microscopy, Electron, Scanning
Non peptidic neurotransmitters, polyamines
Other biological molecules
title Subsecond Adsorption and Desorption of Dopamine at Carbon-Fiber Microelectrodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subsecond%20Adsorption%20and%20Desorption%20of%20Dopamine%20at%20Carbon-Fiber%20Microelectrodes&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Bath,%20Bradley%20D&rft.date=2000-12-15&rft.volume=72&rft.issue=24&rft.spage=5994&rft.epage=6002&rft.pages=5994-6002&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac000849y&rft_dat=%3Cproquest_cross%3E66021975%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a470t-e1ba8de3865cd79971267c3a6afd815f65f2f040ac75533734015a9d873a7a843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217867466&rft_id=info:pmid/11140768&rfr_iscdi=true