Loading…
Subsecond Adsorption and Desorption of Dopamine at Carbon-Fiber Microelectrodes
High-repetition fast-scan cyclic voltammetry and chronoamperometry were used to quantify and characterize the kinetics of dopamine and dopamine-o-quinone adsorption and desorption at carbon-fiber microelectrodes. A flow injection analysis system was used for the precise introduction and removal of a...
Saved in:
Published in: | Analytical chemistry (Washington) 2000-12, Vol.72 (24), p.5994-6002 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a470t-e1ba8de3865cd79971267c3a6afd815f65f2f040ac75533734015a9d873a7a843 |
---|---|
cites | cdi_FETCH-LOGICAL-a470t-e1ba8de3865cd79971267c3a6afd815f65f2f040ac75533734015a9d873a7a843 |
container_end_page | 6002 |
container_issue | 24 |
container_start_page | 5994 |
container_title | Analytical chemistry (Washington) |
container_volume | 72 |
creator | Bath, Bradley D Michael, Darren J Trafton, B. Jill Joseph, Joshua D Runnels, Petrise L Wightman, R. Mark |
description | High-repetition fast-scan cyclic voltammetry and chronoamperometry were used to quantify and characterize the kinetics of dopamine and dopamine-o-quinone adsorption and desorption at carbon-fiber microelectrodes. A flow injection analysis system was used for the precise introduction and removal of a bolus of electroactive substance on a sub-second time scale to the disk-shaped surface of a microelectrode that was fabricated from a single carbon fiber (Thornel type T650 or P55). Pretreatment of the electrode surfaces consisted of soaking them in purified isopropyl alcohol for a minimum of 10 min, which resulted in S/N increasing by 200−400% for dopamine above that for those that were soaked in reagent grade solvent. Because of adsorption, high scan rates (2000 V/s) are shown to exhibit equivalent S/N ratios as compared to slower, more traditional scan rates. In addition, the steady-state response to a concentration bolus is shown to occur more rapidly when cyclic voltammetric scans are repeated at short intervals (4 ms). The new methodologies allow for more accurate determinations of the kinetics of neurotransmitter release events (10−500 ms) in biological systems. Brain slice and in vivo experiments using T650 cylinder microelectrodes show that voltammetrically measured uptake kinetics in the caudate are faster using 2000 V/s and 240 Hz measurements, as compared to 300 V/s and 10 Hz. |
doi_str_mv | 10.1021/ac000849y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72520965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66021975</sourcerecordid><originalsourceid>FETCH-LOGICAL-a470t-e1ba8de3865cd79971267c3a6afd815f65f2f040ac75533734015a9d873a7a843</originalsourceid><addsrcrecordid>eNpl0F1L5DAUBuAgKzp-XPgHlrKLghfVk-azlzLjqDCioF6H0zSFup1mNmlh_fdGZxhhvQoneTg55yXkhMIFhYJeogUAzcu3HTKhooBcal38IJN0y_JCAeyTgxhfASgFKvfIPqWUg5J6Qh6exio66_s6u6qjD6uh9X2GqZy5bembbOZXuGx7l-GQTTFUvs_nbeVCdt_a4F3n7BB87eIR2W2wi-54cx6Sl_n18_Q2Xzzc3E2vFjlyBUPuaIW6dkxLYWtVlooWUlmGEptaU9FI0RQNcECrhGBMMQ5UYFlrxVCh5uyQnK37roL_O7o4mGUbres67J0fo1FFyqGUIsFf_8FXP4Y-zWYKqrRUXMqEztco7RJjcI1ZhXaJ4c1QMB8Rm23Eyf7cNByrpau_5CbTBH5vAEaLXROwt23cOi05-_wyX6s2Du7f9hXDHyMVU8I8Pz4ZsbhnMANu5smfrj3a-LXC9_HeARTNnA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217867466</pqid></control><display><type>article</type><title>Subsecond Adsorption and Desorption of Dopamine at Carbon-Fiber Microelectrodes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Bath, Bradley D ; Michael, Darren J ; Trafton, B. Jill ; Joseph, Joshua D ; Runnels, Petrise L ; Wightman, R. Mark</creator><creatorcontrib>Bath, Bradley D ; Michael, Darren J ; Trafton, B. Jill ; Joseph, Joshua D ; Runnels, Petrise L ; Wightman, R. Mark</creatorcontrib><description>High-repetition fast-scan cyclic voltammetry and chronoamperometry were used to quantify and characterize the kinetics of dopamine and dopamine-o-quinone adsorption and desorption at carbon-fiber microelectrodes. A flow injection analysis system was used for the precise introduction and removal of a bolus of electroactive substance on a sub-second time scale to the disk-shaped surface of a microelectrode that was fabricated from a single carbon fiber (Thornel type T650 or P55). Pretreatment of the electrode surfaces consisted of soaking them in purified isopropyl alcohol for a minimum of 10 min, which resulted in S/N increasing by 200−400% for dopamine above that for those that were soaked in reagent grade solvent. Because of adsorption, high scan rates (2000 V/s) are shown to exhibit equivalent S/N ratios as compared to slower, more traditional scan rates. In addition, the steady-state response to a concentration bolus is shown to occur more rapidly when cyclic voltammetric scans are repeated at short intervals (4 ms). The new methodologies allow for more accurate determinations of the kinetics of neurotransmitter release events (10−500 ms) in biological systems. Brain slice and in vivo experiments using T650 cylinder microelectrodes show that voltammetrically measured uptake kinetics in the caudate are faster using 2000 V/s and 240 Hz measurements, as compared to 300 V/s and 10 Hz.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac000849y</identifier><identifier>PMID: 11140768</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Analytical, structural and metabolic biochemistry ; Animals ; Biological and medical sciences ; Brain Chemistry ; Carbon ; Carbon - chemistry ; Chemistry ; Dopamine - chemistry ; Electrons ; Fundamental and applied biological sciences. Psychology ; Kinetics ; Mice ; Microelectrodes ; Microscopy, Electron, Scanning ; Non peptidic neurotransmitters, polyamines ; Other biological molecules</subject><ispartof>Analytical chemistry (Washington), 2000-12, Vol.72 (24), p.5994-6002</ispartof><rights>Copyright © 2000 American Chemical Society</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Chemical Society Dec 15, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a470t-e1ba8de3865cd79971267c3a6afd815f65f2f040ac75533734015a9d873a7a843</citedby><cites>FETCH-LOGICAL-a470t-e1ba8de3865cd79971267c3a6afd815f65f2f040ac75533734015a9d873a7a843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=864366$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11140768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bath, Bradley D</creatorcontrib><creatorcontrib>Michael, Darren J</creatorcontrib><creatorcontrib>Trafton, B. Jill</creatorcontrib><creatorcontrib>Joseph, Joshua D</creatorcontrib><creatorcontrib>Runnels, Petrise L</creatorcontrib><creatorcontrib>Wightman, R. Mark</creatorcontrib><title>Subsecond Adsorption and Desorption of Dopamine at Carbon-Fiber Microelectrodes</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>High-repetition fast-scan cyclic voltammetry and chronoamperometry were used to quantify and characterize the kinetics of dopamine and dopamine-o-quinone adsorption and desorption at carbon-fiber microelectrodes. A flow injection analysis system was used for the precise introduction and removal of a bolus of electroactive substance on a sub-second time scale to the disk-shaped surface of a microelectrode that was fabricated from a single carbon fiber (Thornel type T650 or P55). Pretreatment of the electrode surfaces consisted of soaking them in purified isopropyl alcohol for a minimum of 10 min, which resulted in S/N increasing by 200−400% for dopamine above that for those that were soaked in reagent grade solvent. Because of adsorption, high scan rates (2000 V/s) are shown to exhibit equivalent S/N ratios as compared to slower, more traditional scan rates. In addition, the steady-state response to a concentration bolus is shown to occur more rapidly when cyclic voltammetric scans are repeated at short intervals (4 ms). The new methodologies allow for more accurate determinations of the kinetics of neurotransmitter release events (10−500 ms) in biological systems. Brain slice and in vivo experiments using T650 cylinder microelectrodes show that voltammetrically measured uptake kinetics in the caudate are faster using 2000 V/s and 240 Hz measurements, as compared to 300 V/s and 10 Hz.</description><subject>Adsorption</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Brain Chemistry</subject><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Chemistry</subject><subject>Dopamine - chemistry</subject><subject>Electrons</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Kinetics</subject><subject>Mice</subject><subject>Microelectrodes</subject><subject>Microscopy, Electron, Scanning</subject><subject>Non peptidic neurotransmitters, polyamines</subject><subject>Other biological molecules</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpl0F1L5DAUBuAgKzp-XPgHlrKLghfVk-azlzLjqDCioF6H0zSFup1mNmlh_fdGZxhhvQoneTg55yXkhMIFhYJeogUAzcu3HTKhooBcal38IJN0y_JCAeyTgxhfASgFKvfIPqWUg5J6Qh6exio66_s6u6qjD6uh9X2GqZy5bembbOZXuGx7l-GQTTFUvs_nbeVCdt_a4F3n7BB87eIR2W2wi-54cx6Sl_n18_Q2Xzzc3E2vFjlyBUPuaIW6dkxLYWtVlooWUlmGEptaU9FI0RQNcECrhGBMMQ5UYFlrxVCh5uyQnK37roL_O7o4mGUbres67J0fo1FFyqGUIsFf_8FXP4Y-zWYKqrRUXMqEztco7RJjcI1ZhXaJ4c1QMB8Rm23Eyf7cNByrpau_5CbTBH5vAEaLXROwt23cOi05-_wyX6s2Du7f9hXDHyMVU8I8Pz4ZsbhnMANu5smfrj3a-LXC9_HeARTNnA0</recordid><startdate>20001215</startdate><enddate>20001215</enddate><creator>Bath, Bradley D</creator><creator>Michael, Darren J</creator><creator>Trafton, B. Jill</creator><creator>Joseph, Joshua D</creator><creator>Runnels, Petrise L</creator><creator>Wightman, R. Mark</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20001215</creationdate><title>Subsecond Adsorption and Desorption of Dopamine at Carbon-Fiber Microelectrodes</title><author>Bath, Bradley D ; Michael, Darren J ; Trafton, B. Jill ; Joseph, Joshua D ; Runnels, Petrise L ; Wightman, R. Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a470t-e1ba8de3865cd79971267c3a6afd815f65f2f040ac75533734015a9d873a7a843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adsorption</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Brain Chemistry</topic><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Chemistry</topic><topic>Dopamine - chemistry</topic><topic>Electrons</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Kinetics</topic><topic>Mice</topic><topic>Microelectrodes</topic><topic>Microscopy, Electron, Scanning</topic><topic>Non peptidic neurotransmitters, polyamines</topic><topic>Other biological molecules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bath, Bradley D</creatorcontrib><creatorcontrib>Michael, Darren J</creatorcontrib><creatorcontrib>Trafton, B. Jill</creatorcontrib><creatorcontrib>Joseph, Joshua D</creatorcontrib><creatorcontrib>Runnels, Petrise L</creatorcontrib><creatorcontrib>Wightman, R. Mark</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bath, Bradley D</au><au>Michael, Darren J</au><au>Trafton, B. Jill</au><au>Joseph, Joshua D</au><au>Runnels, Petrise L</au><au>Wightman, R. Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subsecond Adsorption and Desorption of Dopamine at Carbon-Fiber Microelectrodes</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2000-12-15</date><risdate>2000</risdate><volume>72</volume><issue>24</issue><spage>5994</spage><epage>6002</epage><pages>5994-6002</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>High-repetition fast-scan cyclic voltammetry and chronoamperometry were used to quantify and characterize the kinetics of dopamine and dopamine-o-quinone adsorption and desorption at carbon-fiber microelectrodes. A flow injection analysis system was used for the precise introduction and removal of a bolus of electroactive substance on a sub-second time scale to the disk-shaped surface of a microelectrode that was fabricated from a single carbon fiber (Thornel type T650 or P55). Pretreatment of the electrode surfaces consisted of soaking them in purified isopropyl alcohol for a minimum of 10 min, which resulted in S/N increasing by 200−400% for dopamine above that for those that were soaked in reagent grade solvent. Because of adsorption, high scan rates (2000 V/s) are shown to exhibit equivalent S/N ratios as compared to slower, more traditional scan rates. In addition, the steady-state response to a concentration bolus is shown to occur more rapidly when cyclic voltammetric scans are repeated at short intervals (4 ms). The new methodologies allow for more accurate determinations of the kinetics of neurotransmitter release events (10−500 ms) in biological systems. Brain slice and in vivo experiments using T650 cylinder microelectrodes show that voltammetrically measured uptake kinetics in the caudate are faster using 2000 V/s and 240 Hz measurements, as compared to 300 V/s and 10 Hz.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>11140768</pmid><doi>10.1021/ac000849y</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2000-12, Vol.72 (24), p.5994-6002 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_72520965 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Adsorption Analytical, structural and metabolic biochemistry Animals Biological and medical sciences Brain Chemistry Carbon Carbon - chemistry Chemistry Dopamine - chemistry Electrons Fundamental and applied biological sciences. Psychology Kinetics Mice Microelectrodes Microscopy, Electron, Scanning Non peptidic neurotransmitters, polyamines Other biological molecules |
title | Subsecond Adsorption and Desorption of Dopamine at Carbon-Fiber Microelectrodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subsecond%20Adsorption%20and%20Desorption%20of%20Dopamine%20at%20Carbon-Fiber%20Microelectrodes&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Bath,%20Bradley%20D&rft.date=2000-12-15&rft.volume=72&rft.issue=24&rft.spage=5994&rft.epage=6002&rft.pages=5994-6002&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac000849y&rft_dat=%3Cproquest_cross%3E66021975%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a470t-e1ba8de3865cd79971267c3a6afd815f65f2f040ac75533734015a9d873a7a843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217867466&rft_id=info:pmid/11140768&rfr_iscdi=true |