Loading…

Fractional step methods applied to a chemotaxis model

A fractional step numerical method is developed for the nonlinear partial differential equations arising in chemotaxis models, which include density-dependent diffusion terms for chemotaxis, as well as reaction and Fickian diffusion terms. We take the novel approach of viewing the chemotaxis term as...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical biology 2000-11, Vol.41 (5), p.455-475
Main Authors: Tyson, R, Stern, L G, LeVeque, R J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c413t-5ee57f6c5134cf4876f008ff596d9502239349627c7c4db130cbcd5b6fd544923
cites
container_end_page 475
container_issue 5
container_start_page 455
container_title Journal of mathematical biology
container_volume 41
creator Tyson, R
Stern, L G
LeVeque, R J
description A fractional step numerical method is developed for the nonlinear partial differential equations arising in chemotaxis models, which include density-dependent diffusion terms for chemotaxis, as well as reaction and Fickian diffusion terms. We take the novel approach of viewing the chemotaxis term as an advection term which is possible in the context of fractional steps. This method is applied to pattern formation problems in bacterial growth and shown to give good results. High-resolution methods capable of capturing steep gradients (from CLAWPACK) are used for the advection step, while the A-stable and L-stable TR-BDF2 method is used for the diffusion step. A numerical instability that is seen with other diffusion methods is analyzed and eliminated.
doi_str_mv 10.1007/s002850000038
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72524356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72524356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-5ee57f6c5134cf4876f008ff596d9502239349627c7c4db130cbcd5b6fd544923</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuBFFFurR68SPHiLzuz3HqVYFQpe9Bw2uxuaknRjNgH997a2IHpxLnN5eId5CblEuEUAdZcAqBawG6aPyBQ5ozlylMdkCgxYLjXSCTlLaQ2AShg8JRNEFKhAT4lY9NYNddzYJktD6LI2DKvoU2a7rqmDz4aY2cytQhsH-1GnrI0-NOfkpLJNCheHPSNvi4fX-VO-fHl8nt8vc8eRDbkIQahKOoGMu4prJSsAXVXCSG8EUMoM40ZS5ZTjvkQGrnRelLLygnND2Yzc7HO7Pr6PIQ1FWycXmsZuQhxToaignAn5L0SN2shveP0HruPYb79PhTZMCaH17my-R66PKfWhKrq-bm3_WSAUu9aLX61v_dUhdCzb4H_0oWb2BS6Eecs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893755882</pqid></control><display><type>article</type><title>Fractional step methods applied to a chemotaxis model</title><source>Springer Nature</source><creator>Tyson, R ; Stern, L G ; LeVeque, R J</creator><creatorcontrib>Tyson, R ; Stern, L G ; LeVeque, R J</creatorcontrib><description>A fractional step numerical method is developed for the nonlinear partial differential equations arising in chemotaxis models, which include density-dependent diffusion terms for chemotaxis, as well as reaction and Fickian diffusion terms. We take the novel approach of viewing the chemotaxis term as an advection term which is possible in the context of fractional steps. This method is applied to pattern formation problems in bacterial growth and shown to give good results. High-resolution methods capable of capturing steep gradients (from CLAWPACK) are used for the advection step, while the A-stable and L-stable TR-BDF2 method is used for the diffusion step. A numerical instability that is seen with other diffusion methods is analyzed and eliminated.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s002850000038</identifier><identifier>PMID: 11151708</identifier><language>eng</language><publisher>Germany: Springer Nature B.V</publisher><subject>Chemotaxis - physiology ; Computer Simulation ; Escherichia coli - growth &amp; development ; Escherichia coli - physiology ; Models, Biological ; Salmonella typhimurium - growth &amp; development ; Salmonella typhimurium - physiology</subject><ispartof>Journal of mathematical biology, 2000-11, Vol.41 (5), p.455-475</ispartof><rights>Springer-Verlag Berlin Heidelberg 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-5ee57f6c5134cf4876f008ff596d9502239349627c7c4db130cbcd5b6fd544923</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11151708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tyson, R</creatorcontrib><creatorcontrib>Stern, L G</creatorcontrib><creatorcontrib>LeVeque, R J</creatorcontrib><title>Fractional step methods applied to a chemotaxis model</title><title>Journal of mathematical biology</title><addtitle>J Math Biol</addtitle><description>A fractional step numerical method is developed for the nonlinear partial differential equations arising in chemotaxis models, which include density-dependent diffusion terms for chemotaxis, as well as reaction and Fickian diffusion terms. We take the novel approach of viewing the chemotaxis term as an advection term which is possible in the context of fractional steps. This method is applied to pattern formation problems in bacterial growth and shown to give good results. High-resolution methods capable of capturing steep gradients (from CLAWPACK) are used for the advection step, while the A-stable and L-stable TR-BDF2 method is used for the diffusion step. A numerical instability that is seen with other diffusion methods is analyzed and eliminated.</description><subject>Chemotaxis - physiology</subject><subject>Computer Simulation</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Escherichia coli - physiology</subject><subject>Models, Biological</subject><subject>Salmonella typhimurium - growth &amp; development</subject><subject>Salmonella typhimurium - physiology</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqF0E1Lw0AQBuBFFFurR68SPHiLzuz3HqVYFQpe9Bw2uxuaknRjNgH997a2IHpxLnN5eId5CblEuEUAdZcAqBawG6aPyBQ5ozlylMdkCgxYLjXSCTlLaQ2AShg8JRNEFKhAT4lY9NYNddzYJktD6LI2DKvoU2a7rqmDz4aY2cytQhsH-1GnrI0-NOfkpLJNCheHPSNvi4fX-VO-fHl8nt8vc8eRDbkIQahKOoGMu4prJSsAXVXCSG8EUMoM40ZS5ZTjvkQGrnRelLLygnND2Yzc7HO7Pr6PIQ1FWycXmsZuQhxToaignAn5L0SN2shveP0HruPYb79PhTZMCaH17my-R66PKfWhKrq-bm3_WSAUu9aLX61v_dUhdCzb4H_0oWb2BS6Eecs</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Tyson, R</creator><creator>Stern, L G</creator><creator>LeVeque, R J</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QG</scope><scope>7QR</scope><scope>7X8</scope></search><sort><creationdate>20001101</creationdate><title>Fractional step methods applied to a chemotaxis model</title><author>Tyson, R ; Stern, L G ; LeVeque, R J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-5ee57f6c5134cf4876f008ff596d9502239349627c7c4db130cbcd5b6fd544923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Chemotaxis - physiology</topic><topic>Computer Simulation</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Escherichia coli - physiology</topic><topic>Models, Biological</topic><topic>Salmonella typhimurium - growth &amp; development</topic><topic>Salmonella typhimurium - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tyson, R</creatorcontrib><creatorcontrib>Stern, L G</creatorcontrib><creatorcontrib>LeVeque, R J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tyson, R</au><au>Stern, L G</au><au>LeVeque, R J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional step methods applied to a chemotaxis model</atitle><jtitle>Journal of mathematical biology</jtitle><addtitle>J Math Biol</addtitle><date>2000-11-01</date><risdate>2000</risdate><volume>41</volume><issue>5</issue><spage>455</spage><epage>475</epage><pages>455-475</pages><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>A fractional step numerical method is developed for the nonlinear partial differential equations arising in chemotaxis models, which include density-dependent diffusion terms for chemotaxis, as well as reaction and Fickian diffusion terms. We take the novel approach of viewing the chemotaxis term as an advection term which is possible in the context of fractional steps. This method is applied to pattern formation problems in bacterial growth and shown to give good results. High-resolution methods capable of capturing steep gradients (from CLAWPACK) are used for the advection step, while the A-stable and L-stable TR-BDF2 method is used for the diffusion step. A numerical instability that is seen with other diffusion methods is analyzed and eliminated.</abstract><cop>Germany</cop><pub>Springer Nature B.V</pub><pmid>11151708</pmid><doi>10.1007/s002850000038</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0303-6812
ispartof Journal of mathematical biology, 2000-11, Vol.41 (5), p.455-475
issn 0303-6812
1432-1416
language eng
recordid cdi_proquest_miscellaneous_72524356
source Springer Nature
subjects Chemotaxis - physiology
Computer Simulation
Escherichia coli - growth & development
Escherichia coli - physiology
Models, Biological
Salmonella typhimurium - growth & development
Salmonella typhimurium - physiology
title Fractional step methods applied to a chemotaxis model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A02%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20step%20methods%20applied%20to%20a%20chemotaxis%20model&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Tyson,%20R&rft.date=2000-11-01&rft.volume=41&rft.issue=5&rft.spage=455&rft.epage=475&rft.pages=455-475&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s002850000038&rft_dat=%3Cproquest_cross%3E72524356%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-5ee57f6c5134cf4876f008ff596d9502239349627c7c4db130cbcd5b6fd544923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=893755882&rft_id=info:pmid/11151708&rfr_iscdi=true