Loading…

Influence of affinity and antigen density on antibody localization in a modifiable tumor targeting model

A persistent question in the field of antibody imaging and therapy is whether increased affinity is advantageous for the targeting of tumors. We have addressed this issue by using a manipulatable model system to investigate the impact of affinity and antigen density on antibody localization. In vitr...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Ill.), 2000-12, Vol.60 (24), p.7008-7013
Main Authors: ZUCKIER, Lionel S, BERKOWITZ, Eric Z, SATTENBERG, Ronald J, QUING HUA ZHAO, HOU FU DENG, SCHARFF, Matthew D
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A persistent question in the field of antibody imaging and therapy is whether increased affinity is advantageous for the targeting of tumors. We have addressed this issue by using a manipulatable model system to investigate the impact of affinity and antigen density on antibody localization. In vitro enzyme-linked immunosorbent assays and bead-binding assays were carried out using BSA conjugated with high and low densities (HD and LD, respectively) of the chemical hapten rho-azophenyl-arsonate as an antigen. Isotype-matched monoclonal antibodies (mAbs) 36-65 and 36-71, with identical epitope specificity but 200-fold differences in affinity, were chosen as targeting agents. The relative in vitro binding of 36-65 and 36-71 was compared with an artificial "tumor" model in vivo using antigen-substituted beads s.c. implanted into SCID mice. Nonsubstituted BSA beads were implanted in the contralateral groin as a nonspecific control. The efficacy of the targeting of [125I]-labeled antibodies was assessed by the imaging of animals on a gamma-scintillation camera using quantitative region-of-interest image analysis over the course of 2 weeks and by postmortem tissue counting. In vitro, both antibodies bound well to the HD antigen, whereas only the high-affinity mAb 36-71 bound effectively to the LD antigen. In vivo, high-affinity mAb 36-71 bound appreciably to both LD and HD beads. In contrast, there was no specific localization of low-affinity mAb 36-65 to LD antigen beads, although the antibody did bind to the beads with the HD antigen. Whereas the high-affinity mAb 36-71 increased its binding to HD beads throughout the 14 days of observation, binding of the high affinity antibody to LD beads and of the low affinity antibody to HD beads plateaued between 10-14 days. These in vitro and in vivo findings demonstrate that the need for a high-affinity antibody is dependent on the density of the target antigen. High-affinity antibodies bind effectively even with a single antigen-Fab interaction, irrespective of the antigen density. In contrast, low-affinity antibodies, because of weak individual antigen-Fab interactions, require the avidity conferred by divalent binding for effective attachment, which can only occur if antigen density is above a certain threshold. An understanding of the differential behavior of high- and low-affinity antibodies and the impact of avidity is useful in predicting the binding of monovalent antibody fragments and engineered antibody constr
ISSN:0008-5472
1538-7445