Loading…
X-Ray Microscopic Studies of the Drosophila Dosage Compensation Complex
X-raymicroscopy is applied to detect specific proteins in whole cell nuclei of Drosophila melanogaster using immunogold labeling and silver enhancement. As a model for a small subnuclear structure the Drosophila dosage compensation protein MSL-1 was chosen. It associates with a number of other prote...
Saved in:
Published in: | Journal of structural biology 2000-11, Vol.132 (2), p.123-132 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | X-raymicroscopy is applied to detect specific proteins in whole cell nuclei of Drosophila melanogaster using immunogold labeling and silver enhancement. As a model for a small subnuclear structure the Drosophila dosage compensation protein MSL-1 was chosen. It associates with a number of other proteins to form a hetero-multiprotein complex, which elevates the transcriptional activity of the single X chromosome in males. This phenomenon is known as dosage compensation and is essential for the survival of male flies. The distribution of the Drosophila dosage compensation complex was studied by X-ray microscopy, because though the complex is expected to function by remodeling the structureof chromatin, its exact mode of action is not yet known. Many similar protein complexes are associated with different aspects of chromatin-mediated gene regulation in all eucaryotic organisms and can also be studied with the approach presented in this work. The distribution of MSL-1 protein in the nuclei of fixed D. melanogaster culture cells is visualized using the Göttingen X-ray microscope at the electron storage ring BESSY I. In addition to conventional and confocal laserscan fluorescence microscopy, X-ray microscopic investigations were performed at room as well as at cryogenic temperatures. The label can clearly be identified in the X-ray micrographs and shows detailed structure in the cell nuclei. Currently, X-ray micrographs show details in the cell nuclei about five times smaller than those in visible light micrographs. |
---|---|
ISSN: | 1047-8477 1095-8657 |
DOI: | 10.1006/jsbi.2000.4277 |