Loading…

Genetic Defects in Postsqualene Cholesterol Biosynthesis

In humans and mice, four different genetic defects in the nine biosynthetic steps from lanosterol to cholesterol have been identified. They impair the activity of a putative C3-sterol dehydrogenase (Nshdl, X-linked dominant bare patches/striated mutation in mice), the sterol Δ8-Δ7 isomerase/EBP (Ebp...

Full description

Saved in:
Bibliographic Details
Published in:Trends in Endocrinology & Metabolism 2000-04, Vol.11 (3), p.106-114
Main Authors: Moebius, Fabian F., Fitzky, Barbara U., Glossmann, Hartmut
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-ca5c23c256ea19dbd7e3e8c5866f3dedadec30c8c6354369c91aea20a7d133e93
cites cdi_FETCH-LOGICAL-c390t-ca5c23c256ea19dbd7e3e8c5866f3dedadec30c8c6354369c91aea20a7d133e93
container_end_page 114
container_issue 3
container_start_page 106
container_title Trends in Endocrinology & Metabolism
container_volume 11
creator Moebius, Fabian F.
Fitzky, Barbara U.
Glossmann, Hartmut
description In humans and mice, four different genetic defects in the nine biosynthetic steps from lanosterol to cholesterol have been identified. They impair the activity of a putative C3-sterol dehydrogenase (Nshdl, X-linked dominant bare patches/striated mutation in mice), the sterol Δ8-Δ7 isomerase/EBP (Ebp, X-linked dominant tattered mutation in mice; chondrodysplasia punctata (CDPX2) in humans), the Δ24-sterol reductase (autosomal recessive desmosterolosis) and the Δ7-sterol reductase (DHCR7 gene, autosomal recessive Smith–Lemli–Opitz syndrome in humans). These inborn errors in postsqualene cholesterol metabolism result in dysmorphogenetic syndromes of variable severity. The X-linked dominant mutations result in mosaicism in females, as a result of X-inactivation, and midgestational lethality in males. The mechanisms by which the depletion of cholesterol or the accumulation of intermediates impair morphogenetic programs are unclear. So far, no cellular processes that require an intact cholesterol biosynthetic pathway have been identified, although the morphogenetic hedgehog–patched signaling cascade is a candidate.
doi_str_mv 10.1016/S1043-2760(00)00235-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72576685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1043276000002356</els_id><sourcerecordid>72576685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-ca5c23c256ea19dbd7e3e8c5866f3dedadec30c8c6354369c91aea20a7d133e93</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMofv8EpQcRPVQnzSZtT6LrJwgK6jnEyRQj3VYzXcF_b9Zd0ZskkIE8M-_wCLEj4UiCNMcPEkYqL0oDBwCHAIXSuVkS67Iq61yBkcup_kHWxAbzK4AcVVKvijUJZTparovqijoaAmbn1BAOnIUuu-954Pepa9NXNn7pW-KBYt9mZ6Hnz254IQ68JVYa1zJtL95N8XR58Ti-zm_vrm7Gp7c5qhqGHJ3GQmGhDTlZ-2dfkqIKdWVMozx55wkVYIVG6ZEyNdbSkSvAlV4qRbXaFPvzuW-xf5-mTewkMFLbuo76Kduy0KUxlU6gnoMYe-ZIjX2LYeLip5VgZ8rstzI782FhdpMya1Lf7iJg-jwh_6dr7igBewvAMbq2ia7DwL-cgkrrWf7JHKNk4yNQtIyBOiQfYjJrfR_-2eQLU9OH7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72576685</pqid></control><display><type>article</type><title>Genetic Defects in Postsqualene Cholesterol Biosynthesis</title><source>ScienceDirect Freedom Collection</source><creator>Moebius, Fabian F. ; Fitzky, Barbara U. ; Glossmann, Hartmut</creator><creatorcontrib>Moebius, Fabian F. ; Fitzky, Barbara U. ; Glossmann, Hartmut</creatorcontrib><description>In humans and mice, four different genetic defects in the nine biosynthetic steps from lanosterol to cholesterol have been identified. They impair the activity of a putative C3-sterol dehydrogenase (Nshdl, X-linked dominant bare patches/striated mutation in mice), the sterol Δ8-Δ7 isomerase/EBP (Ebp, X-linked dominant tattered mutation in mice; chondrodysplasia punctata (CDPX2) in humans), the Δ24-sterol reductase (autosomal recessive desmosterolosis) and the Δ7-sterol reductase (DHCR7 gene, autosomal recessive Smith–Lemli–Opitz syndrome in humans). These inborn errors in postsqualene cholesterol metabolism result in dysmorphogenetic syndromes of variable severity. The X-linked dominant mutations result in mosaicism in females, as a result of X-inactivation, and midgestational lethality in males. The mechanisms by which the depletion of cholesterol or the accumulation of intermediates impair morphogenetic programs are unclear. So far, no cellular processes that require an intact cholesterol biosynthetic pathway have been identified, although the morphogenetic hedgehog–patched signaling cascade is a candidate.</description><identifier>ISSN: 1043-2760</identifier><identifier>EISSN: 1879-3061</identifier><identifier>DOI: 10.1016/S1043-2760(00)00235-6</identifier><identifier>PMID: 10707051</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; Cholesterol - biosynthesis ; Chondrodysplasia Punctata - genetics ; Chondrodysplasia Punctata - metabolism ; Desmosterol - metabolism ; Equilins ; Errors of metabolism ; Genes, Dominant ; Genetic defects ; Humans ; Lipids (lysosomal enzyme disorders, storage diseases) ; Medical sciences ; Metabolic diseases ; Metabolism, Inborn Errors - genetics ; Mice ; Mice, Mutant Strains - genetics ; Mice, Mutant Strains - metabolism ; Smith-Lemli-Opitz Syndrome - genetics ; Smith-Lemli-Opitz Syndrome - metabolism ; Smith–Lemli–Opitz syndrome ; Squalene - metabolism ; Sterol isomerase ; Sterol reductase ; Sterols - biosynthesis ; X Chromosome</subject><ispartof>Trends in Endocrinology &amp; Metabolism, 2000-04, Vol.11 (3), p.106-114</ispartof><rights>2000 Elsevier Science Ltd</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-ca5c23c256ea19dbd7e3e8c5866f3dedadec30c8c6354369c91aea20a7d133e93</citedby><cites>FETCH-LOGICAL-c390t-ca5c23c256ea19dbd7e3e8c5866f3dedadec30c8c6354369c91aea20a7d133e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>313,314,780,784,792,27920,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1308555$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10707051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moebius, Fabian F.</creatorcontrib><creatorcontrib>Fitzky, Barbara U.</creatorcontrib><creatorcontrib>Glossmann, Hartmut</creatorcontrib><title>Genetic Defects in Postsqualene Cholesterol Biosynthesis</title><title>Trends in Endocrinology &amp; Metabolism</title><addtitle>Trends Endocrinol Metab</addtitle><description>In humans and mice, four different genetic defects in the nine biosynthetic steps from lanosterol to cholesterol have been identified. They impair the activity of a putative C3-sterol dehydrogenase (Nshdl, X-linked dominant bare patches/striated mutation in mice), the sterol Δ8-Δ7 isomerase/EBP (Ebp, X-linked dominant tattered mutation in mice; chondrodysplasia punctata (CDPX2) in humans), the Δ24-sterol reductase (autosomal recessive desmosterolosis) and the Δ7-sterol reductase (DHCR7 gene, autosomal recessive Smith–Lemli–Opitz syndrome in humans). These inborn errors in postsqualene cholesterol metabolism result in dysmorphogenetic syndromes of variable severity. The X-linked dominant mutations result in mosaicism in females, as a result of X-inactivation, and midgestational lethality in males. The mechanisms by which the depletion of cholesterol or the accumulation of intermediates impair morphogenetic programs are unclear. So far, no cellular processes that require an intact cholesterol biosynthetic pathway have been identified, although the morphogenetic hedgehog–patched signaling cascade is a candidate.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cholesterol - biosynthesis</subject><subject>Chondrodysplasia Punctata - genetics</subject><subject>Chondrodysplasia Punctata - metabolism</subject><subject>Desmosterol - metabolism</subject><subject>Equilins</subject><subject>Errors of metabolism</subject><subject>Genes, Dominant</subject><subject>Genetic defects</subject><subject>Humans</subject><subject>Lipids (lysosomal enzyme disorders, storage diseases)</subject><subject>Medical sciences</subject><subject>Metabolic diseases</subject><subject>Metabolism, Inborn Errors - genetics</subject><subject>Mice</subject><subject>Mice, Mutant Strains - genetics</subject><subject>Mice, Mutant Strains - metabolism</subject><subject>Smith-Lemli-Opitz Syndrome - genetics</subject><subject>Smith-Lemli-Opitz Syndrome - metabolism</subject><subject>Smith–Lemli–Opitz syndrome</subject><subject>Squalene - metabolism</subject><subject>Sterol isomerase</subject><subject>Sterol reductase</subject><subject>Sterols - biosynthesis</subject><subject>X Chromosome</subject><issn>1043-2760</issn><issn>1879-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMofv8EpQcRPVQnzSZtT6LrJwgK6jnEyRQj3VYzXcF_b9Zd0ZskkIE8M-_wCLEj4UiCNMcPEkYqL0oDBwCHAIXSuVkS67Iq61yBkcup_kHWxAbzK4AcVVKvijUJZTparovqijoaAmbn1BAOnIUuu-954Pepa9NXNn7pW-KBYt9mZ6Hnz254IQ68JVYa1zJtL95N8XR58Ti-zm_vrm7Gp7c5qhqGHJ3GQmGhDTlZ-2dfkqIKdWVMozx55wkVYIVG6ZEyNdbSkSvAlV4qRbXaFPvzuW-xf5-mTewkMFLbuo76Kduy0KUxlU6gnoMYe-ZIjX2LYeLip5VgZ8rstzI782FhdpMya1Lf7iJg-jwh_6dr7igBewvAMbq2ia7DwL-cgkrrWf7JHKNk4yNQtIyBOiQfYjJrfR_-2eQLU9OH7w</recordid><startdate>20000401</startdate><enddate>20000401</enddate><creator>Moebius, Fabian F.</creator><creator>Fitzky, Barbara U.</creator><creator>Glossmann, Hartmut</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000401</creationdate><title>Genetic Defects in Postsqualene Cholesterol Biosynthesis</title><author>Moebius, Fabian F. ; Fitzky, Barbara U. ; Glossmann, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-ca5c23c256ea19dbd7e3e8c5866f3dedadec30c8c6354369c91aea20a7d133e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cholesterol - biosynthesis</topic><topic>Chondrodysplasia Punctata - genetics</topic><topic>Chondrodysplasia Punctata - metabolism</topic><topic>Desmosterol - metabolism</topic><topic>Equilins</topic><topic>Errors of metabolism</topic><topic>Genes, Dominant</topic><topic>Genetic defects</topic><topic>Humans</topic><topic>Lipids (lysosomal enzyme disorders, storage diseases)</topic><topic>Medical sciences</topic><topic>Metabolic diseases</topic><topic>Metabolism, Inborn Errors - genetics</topic><topic>Mice</topic><topic>Mice, Mutant Strains - genetics</topic><topic>Mice, Mutant Strains - metabolism</topic><topic>Smith-Lemli-Opitz Syndrome - genetics</topic><topic>Smith-Lemli-Opitz Syndrome - metabolism</topic><topic>Smith–Lemli–Opitz syndrome</topic><topic>Squalene - metabolism</topic><topic>Sterol isomerase</topic><topic>Sterol reductase</topic><topic>Sterols - biosynthesis</topic><topic>X Chromosome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moebius, Fabian F.</creatorcontrib><creatorcontrib>Fitzky, Barbara U.</creatorcontrib><creatorcontrib>Glossmann, Hartmut</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in Endocrinology &amp; Metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moebius, Fabian F.</au><au>Fitzky, Barbara U.</au><au>Glossmann, Hartmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Defects in Postsqualene Cholesterol Biosynthesis</atitle><jtitle>Trends in Endocrinology &amp; Metabolism</jtitle><addtitle>Trends Endocrinol Metab</addtitle><date>2000-04-01</date><risdate>2000</risdate><volume>11</volume><issue>3</issue><spage>106</spage><epage>114</epage><pages>106-114</pages><issn>1043-2760</issn><eissn>1879-3061</eissn><abstract>In humans and mice, four different genetic defects in the nine biosynthetic steps from lanosterol to cholesterol have been identified. They impair the activity of a putative C3-sterol dehydrogenase (Nshdl, X-linked dominant bare patches/striated mutation in mice), the sterol Δ8-Δ7 isomerase/EBP (Ebp, X-linked dominant tattered mutation in mice; chondrodysplasia punctata (CDPX2) in humans), the Δ24-sterol reductase (autosomal recessive desmosterolosis) and the Δ7-sterol reductase (DHCR7 gene, autosomal recessive Smith–Lemli–Opitz syndrome in humans). These inborn errors in postsqualene cholesterol metabolism result in dysmorphogenetic syndromes of variable severity. The X-linked dominant mutations result in mosaicism in females, as a result of X-inactivation, and midgestational lethality in males. The mechanisms by which the depletion of cholesterol or the accumulation of intermediates impair morphogenetic programs are unclear. So far, no cellular processes that require an intact cholesterol biosynthetic pathway have been identified, although the morphogenetic hedgehog–patched signaling cascade is a candidate.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><pmid>10707051</pmid><doi>10.1016/S1043-2760(00)00235-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1043-2760
ispartof Trends in Endocrinology & Metabolism, 2000-04, Vol.11 (3), p.106-114
issn 1043-2760
1879-3061
language eng
recordid cdi_proquest_miscellaneous_72576685
source ScienceDirect Freedom Collection
subjects Animals
Biological and medical sciences
Cholesterol - biosynthesis
Chondrodysplasia Punctata - genetics
Chondrodysplasia Punctata - metabolism
Desmosterol - metabolism
Equilins
Errors of metabolism
Genes, Dominant
Genetic defects
Humans
Lipids (lysosomal enzyme disorders, storage diseases)
Medical sciences
Metabolic diseases
Metabolism, Inborn Errors - genetics
Mice
Mice, Mutant Strains - genetics
Mice, Mutant Strains - metabolism
Smith-Lemli-Opitz Syndrome - genetics
Smith-Lemli-Opitz Syndrome - metabolism
Smith–Lemli–Opitz syndrome
Squalene - metabolism
Sterol isomerase
Sterol reductase
Sterols - biosynthesis
X Chromosome
title Genetic Defects in Postsqualene Cholesterol Biosynthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Defects%20in%20Postsqualene%20Cholesterol%20Biosynthesis&rft.jtitle=Trends%20in%20Endocrinology%20&%20Metabolism&rft.au=Moebius,%20Fabian%20F.&rft.date=2000-04-01&rft.volume=11&rft.issue=3&rft.spage=106&rft.epage=114&rft.pages=106-114&rft.issn=1043-2760&rft.eissn=1879-3061&rft_id=info:doi/10.1016/S1043-2760(00)00235-6&rft_dat=%3Cproquest_cross%3E72576685%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-ca5c23c256ea19dbd7e3e8c5866f3dedadec30c8c6354369c91aea20a7d133e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72576685&rft_id=info:pmid/10707051&rfr_iscdi=true