Loading…
Genetic Defects in Postsqualene Cholesterol Biosynthesis
In humans and mice, four different genetic defects in the nine biosynthetic steps from lanosterol to cholesterol have been identified. They impair the activity of a putative C3-sterol dehydrogenase (Nshdl, X-linked dominant bare patches/striated mutation in mice), the sterol Δ8-Δ7 isomerase/EBP (Ebp...
Saved in:
Published in: | Trends in Endocrinology & Metabolism 2000-04, Vol.11 (3), p.106-114 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-ca5c23c256ea19dbd7e3e8c5866f3dedadec30c8c6354369c91aea20a7d133e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-ca5c23c256ea19dbd7e3e8c5866f3dedadec30c8c6354369c91aea20a7d133e93 |
container_end_page | 114 |
container_issue | 3 |
container_start_page | 106 |
container_title | Trends in Endocrinology & Metabolism |
container_volume | 11 |
creator | Moebius, Fabian F. Fitzky, Barbara U. Glossmann, Hartmut |
description | In humans and mice, four different genetic defects in the nine biosynthetic steps from lanosterol to cholesterol have been identified. They impair the activity of a putative C3-sterol dehydrogenase (Nshdl, X-linked dominant bare patches/striated mutation in mice), the sterol Δ8-Δ7 isomerase/EBP (Ebp, X-linked dominant tattered mutation in mice; chondrodysplasia punctata (CDPX2) in humans), the Δ24-sterol reductase (autosomal recessive desmosterolosis) and the Δ7-sterol reductase (DHCR7 gene, autosomal recessive Smith–Lemli–Opitz syndrome in humans). These inborn errors in postsqualene cholesterol metabolism result in dysmorphogenetic syndromes of variable severity. The X-linked dominant mutations result in mosaicism in females, as a result of X-inactivation, and midgestational lethality in males. The mechanisms by which the depletion of cholesterol or the accumulation of intermediates impair morphogenetic programs are unclear. So far, no cellular processes that require an intact cholesterol biosynthetic pathway have been identified, although the morphogenetic hedgehog–patched signaling cascade is a candidate. |
doi_str_mv | 10.1016/S1043-2760(00)00235-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72576685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1043276000002356</els_id><sourcerecordid>72576685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-ca5c23c256ea19dbd7e3e8c5866f3dedadec30c8c6354369c91aea20a7d133e93</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMofv8EpQcRPVQnzSZtT6LrJwgK6jnEyRQj3VYzXcF_b9Zd0ZskkIE8M-_wCLEj4UiCNMcPEkYqL0oDBwCHAIXSuVkS67Iq61yBkcup_kHWxAbzK4AcVVKvijUJZTparovqijoaAmbn1BAOnIUuu-954Pepa9NXNn7pW-KBYt9mZ6Hnz254IQ68JVYa1zJtL95N8XR58Ti-zm_vrm7Gp7c5qhqGHJ3GQmGhDTlZ-2dfkqIKdWVMozx55wkVYIVG6ZEyNdbSkSvAlV4qRbXaFPvzuW-xf5-mTewkMFLbuo76Kduy0KUxlU6gnoMYe-ZIjX2LYeLip5VgZ8rstzI782FhdpMya1Lf7iJg-jwh_6dr7igBewvAMbq2ia7DwL-cgkrrWf7JHKNk4yNQtIyBOiQfYjJrfR_-2eQLU9OH7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72576685</pqid></control><display><type>article</type><title>Genetic Defects in Postsqualene Cholesterol Biosynthesis</title><source>ScienceDirect Freedom Collection</source><creator>Moebius, Fabian F. ; Fitzky, Barbara U. ; Glossmann, Hartmut</creator><creatorcontrib>Moebius, Fabian F. ; Fitzky, Barbara U. ; Glossmann, Hartmut</creatorcontrib><description>In humans and mice, four different genetic defects in the nine biosynthetic steps from lanosterol to cholesterol have been identified. They impair the activity of a putative C3-sterol dehydrogenase (Nshdl, X-linked dominant bare patches/striated mutation in mice), the sterol Δ8-Δ7 isomerase/EBP (Ebp, X-linked dominant tattered mutation in mice; chondrodysplasia punctata (CDPX2) in humans), the Δ24-sterol reductase (autosomal recessive desmosterolosis) and the Δ7-sterol reductase (DHCR7 gene, autosomal recessive Smith–Lemli–Opitz syndrome in humans). These inborn errors in postsqualene cholesterol metabolism result in dysmorphogenetic syndromes of variable severity. The X-linked dominant mutations result in mosaicism in females, as a result of X-inactivation, and midgestational lethality in males. The mechanisms by which the depletion of cholesterol or the accumulation of intermediates impair morphogenetic programs are unclear. So far, no cellular processes that require an intact cholesterol biosynthetic pathway have been identified, although the morphogenetic hedgehog–patched signaling cascade is a candidate.</description><identifier>ISSN: 1043-2760</identifier><identifier>EISSN: 1879-3061</identifier><identifier>DOI: 10.1016/S1043-2760(00)00235-6</identifier><identifier>PMID: 10707051</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; Cholesterol - biosynthesis ; Chondrodysplasia Punctata - genetics ; Chondrodysplasia Punctata - metabolism ; Desmosterol - metabolism ; Equilins ; Errors of metabolism ; Genes, Dominant ; Genetic defects ; Humans ; Lipids (lysosomal enzyme disorders, storage diseases) ; Medical sciences ; Metabolic diseases ; Metabolism, Inborn Errors - genetics ; Mice ; Mice, Mutant Strains - genetics ; Mice, Mutant Strains - metabolism ; Smith-Lemli-Opitz Syndrome - genetics ; Smith-Lemli-Opitz Syndrome - metabolism ; Smith–Lemli–Opitz syndrome ; Squalene - metabolism ; Sterol isomerase ; Sterol reductase ; Sterols - biosynthesis ; X Chromosome</subject><ispartof>Trends in Endocrinology & Metabolism, 2000-04, Vol.11 (3), p.106-114</ispartof><rights>2000 Elsevier Science Ltd</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-ca5c23c256ea19dbd7e3e8c5866f3dedadec30c8c6354369c91aea20a7d133e93</citedby><cites>FETCH-LOGICAL-c390t-ca5c23c256ea19dbd7e3e8c5866f3dedadec30c8c6354369c91aea20a7d133e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>313,314,780,784,792,27920,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1308555$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10707051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moebius, Fabian F.</creatorcontrib><creatorcontrib>Fitzky, Barbara U.</creatorcontrib><creatorcontrib>Glossmann, Hartmut</creatorcontrib><title>Genetic Defects in Postsqualene Cholesterol Biosynthesis</title><title>Trends in Endocrinology & Metabolism</title><addtitle>Trends Endocrinol Metab</addtitle><description>In humans and mice, four different genetic defects in the nine biosynthetic steps from lanosterol to cholesterol have been identified. They impair the activity of a putative C3-sterol dehydrogenase (Nshdl, X-linked dominant bare patches/striated mutation in mice), the sterol Δ8-Δ7 isomerase/EBP (Ebp, X-linked dominant tattered mutation in mice; chondrodysplasia punctata (CDPX2) in humans), the Δ24-sterol reductase (autosomal recessive desmosterolosis) and the Δ7-sterol reductase (DHCR7 gene, autosomal recessive Smith–Lemli–Opitz syndrome in humans). These inborn errors in postsqualene cholesterol metabolism result in dysmorphogenetic syndromes of variable severity. The X-linked dominant mutations result in mosaicism in females, as a result of X-inactivation, and midgestational lethality in males. The mechanisms by which the depletion of cholesterol or the accumulation of intermediates impair morphogenetic programs are unclear. So far, no cellular processes that require an intact cholesterol biosynthetic pathway have been identified, although the morphogenetic hedgehog–patched signaling cascade is a candidate.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cholesterol - biosynthesis</subject><subject>Chondrodysplasia Punctata - genetics</subject><subject>Chondrodysplasia Punctata - metabolism</subject><subject>Desmosterol - metabolism</subject><subject>Equilins</subject><subject>Errors of metabolism</subject><subject>Genes, Dominant</subject><subject>Genetic defects</subject><subject>Humans</subject><subject>Lipids (lysosomal enzyme disorders, storage diseases)</subject><subject>Medical sciences</subject><subject>Metabolic diseases</subject><subject>Metabolism, Inborn Errors - genetics</subject><subject>Mice</subject><subject>Mice, Mutant Strains - genetics</subject><subject>Mice, Mutant Strains - metabolism</subject><subject>Smith-Lemli-Opitz Syndrome - genetics</subject><subject>Smith-Lemli-Opitz Syndrome - metabolism</subject><subject>Smith–Lemli–Opitz syndrome</subject><subject>Squalene - metabolism</subject><subject>Sterol isomerase</subject><subject>Sterol reductase</subject><subject>Sterols - biosynthesis</subject><subject>X Chromosome</subject><issn>1043-2760</issn><issn>1879-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMofv8EpQcRPVQnzSZtT6LrJwgK6jnEyRQj3VYzXcF_b9Zd0ZskkIE8M-_wCLEj4UiCNMcPEkYqL0oDBwCHAIXSuVkS67Iq61yBkcup_kHWxAbzK4AcVVKvijUJZTparovqijoaAmbn1BAOnIUuu-954Pepa9NXNn7pW-KBYt9mZ6Hnz254IQ68JVYa1zJtL95N8XR58Ti-zm_vrm7Gp7c5qhqGHJ3GQmGhDTlZ-2dfkqIKdWVMozx55wkVYIVG6ZEyNdbSkSvAlV4qRbXaFPvzuW-xf5-mTewkMFLbuo76Kduy0KUxlU6gnoMYe-ZIjX2LYeLip5VgZ8rstzI782FhdpMya1Lf7iJg-jwh_6dr7igBewvAMbq2ia7DwL-cgkrrWf7JHKNk4yNQtIyBOiQfYjJrfR_-2eQLU9OH7w</recordid><startdate>20000401</startdate><enddate>20000401</enddate><creator>Moebius, Fabian F.</creator><creator>Fitzky, Barbara U.</creator><creator>Glossmann, Hartmut</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000401</creationdate><title>Genetic Defects in Postsqualene Cholesterol Biosynthesis</title><author>Moebius, Fabian F. ; Fitzky, Barbara U. ; Glossmann, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-ca5c23c256ea19dbd7e3e8c5866f3dedadec30c8c6354369c91aea20a7d133e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cholesterol - biosynthesis</topic><topic>Chondrodysplasia Punctata - genetics</topic><topic>Chondrodysplasia Punctata - metabolism</topic><topic>Desmosterol - metabolism</topic><topic>Equilins</topic><topic>Errors of metabolism</topic><topic>Genes, Dominant</topic><topic>Genetic defects</topic><topic>Humans</topic><topic>Lipids (lysosomal enzyme disorders, storage diseases)</topic><topic>Medical sciences</topic><topic>Metabolic diseases</topic><topic>Metabolism, Inborn Errors - genetics</topic><topic>Mice</topic><topic>Mice, Mutant Strains - genetics</topic><topic>Mice, Mutant Strains - metabolism</topic><topic>Smith-Lemli-Opitz Syndrome - genetics</topic><topic>Smith-Lemli-Opitz Syndrome - metabolism</topic><topic>Smith–Lemli–Opitz syndrome</topic><topic>Squalene - metabolism</topic><topic>Sterol isomerase</topic><topic>Sterol reductase</topic><topic>Sterols - biosynthesis</topic><topic>X Chromosome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moebius, Fabian F.</creatorcontrib><creatorcontrib>Fitzky, Barbara U.</creatorcontrib><creatorcontrib>Glossmann, Hartmut</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in Endocrinology & Metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moebius, Fabian F.</au><au>Fitzky, Barbara U.</au><au>Glossmann, Hartmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Defects in Postsqualene Cholesterol Biosynthesis</atitle><jtitle>Trends in Endocrinology & Metabolism</jtitle><addtitle>Trends Endocrinol Metab</addtitle><date>2000-04-01</date><risdate>2000</risdate><volume>11</volume><issue>3</issue><spage>106</spage><epage>114</epage><pages>106-114</pages><issn>1043-2760</issn><eissn>1879-3061</eissn><abstract>In humans and mice, four different genetic defects in the nine biosynthetic steps from lanosterol to cholesterol have been identified. They impair the activity of a putative C3-sterol dehydrogenase (Nshdl, X-linked dominant bare patches/striated mutation in mice), the sterol Δ8-Δ7 isomerase/EBP (Ebp, X-linked dominant tattered mutation in mice; chondrodysplasia punctata (CDPX2) in humans), the Δ24-sterol reductase (autosomal recessive desmosterolosis) and the Δ7-sterol reductase (DHCR7 gene, autosomal recessive Smith–Lemli–Opitz syndrome in humans). These inborn errors in postsqualene cholesterol metabolism result in dysmorphogenetic syndromes of variable severity. The X-linked dominant mutations result in mosaicism in females, as a result of X-inactivation, and midgestational lethality in males. The mechanisms by which the depletion of cholesterol or the accumulation of intermediates impair morphogenetic programs are unclear. So far, no cellular processes that require an intact cholesterol biosynthetic pathway have been identified, although the morphogenetic hedgehog–patched signaling cascade is a candidate.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><pmid>10707051</pmid><doi>10.1016/S1043-2760(00)00235-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1043-2760 |
ispartof | Trends in Endocrinology & Metabolism, 2000-04, Vol.11 (3), p.106-114 |
issn | 1043-2760 1879-3061 |
language | eng |
recordid | cdi_proquest_miscellaneous_72576685 |
source | ScienceDirect Freedom Collection |
subjects | Animals Biological and medical sciences Cholesterol - biosynthesis Chondrodysplasia Punctata - genetics Chondrodysplasia Punctata - metabolism Desmosterol - metabolism Equilins Errors of metabolism Genes, Dominant Genetic defects Humans Lipids (lysosomal enzyme disorders, storage diseases) Medical sciences Metabolic diseases Metabolism, Inborn Errors - genetics Mice Mice, Mutant Strains - genetics Mice, Mutant Strains - metabolism Smith-Lemli-Opitz Syndrome - genetics Smith-Lemli-Opitz Syndrome - metabolism Smith–Lemli–Opitz syndrome Squalene - metabolism Sterol isomerase Sterol reductase Sterols - biosynthesis X Chromosome |
title | Genetic Defects in Postsqualene Cholesterol Biosynthesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Defects%20in%20Postsqualene%20Cholesterol%20Biosynthesis&rft.jtitle=Trends%20in%20Endocrinology%20&%20Metabolism&rft.au=Moebius,%20Fabian%20F.&rft.date=2000-04-01&rft.volume=11&rft.issue=3&rft.spage=106&rft.epage=114&rft.pages=106-114&rft.issn=1043-2760&rft.eissn=1879-3061&rft_id=info:doi/10.1016/S1043-2760(00)00235-6&rft_dat=%3Cproquest_cross%3E72576685%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-ca5c23c256ea19dbd7e3e8c5866f3dedadec30c8c6354369c91aea20a7d133e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72576685&rft_id=info:pmid/10707051&rfr_iscdi=true |