Loading…
Amplitude model for the effects of mutations and temperature on period and phase resetting of the Neurospora circadian oscillator
This paper analyzes published and unpublished data on phase resetting of the circadian oscillator in the fungus Neurospora crassa and demonstrates a correlation between period and resetting behavior in several mutants with altered periods: As the period increases, the apparent sensitivity to resetti...
Saved in:
Published in: | Journal of biological rhythms 1991-12, Vol.6 (4), p.281-297 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper analyzes published and unpublished data on phase resetting of the circadian oscillator in the fungus Neurospora crassa and demonstrates a correlation between period and resetting behavior in several mutants with altered periods: As the period increases, the apparent sensitivity to resetting by light and by cycloheximide decreases. Sensitivity to resetting by temperature pulses may also decrease. We suggest that these mutations affect the amplitude of the oscillator and that a change in amplitude is responsible for the observed changes in both period and resetting by several stimuli. As a secondary hypothesis, we propose that temperature compensation of period in Neurospora can be explained by changes in amplitude: As temperature increases, the compensation mechanism may increase the amplitude of the oscillator to maintain a constant period. A number of testable predictions arising from these two hypotheses are discussed.
To demonstrate these hypotheses, a mathematical model of a time-delay oscillator is presented in which both period and amplitude can be increased by a change in a single parameter. The model exhibits the predicted resetting behavior: With a standard perturbation, a smaller amplitude produces type 0 resetting and a larger amplitude produces type 1 resetting. Correlations between period, amplitude, and resetting can also be demonstrated in other types of oscillators. Examples of correlated changes in period and resetting behavior in Drosophila and hamsters raise the possibility that amplitude changes are a general phenomenon in circadian oscillators. |
---|---|
ISSN: | 0748-7304 1552-4531 |
DOI: | 10.1177/074873049100600401 |