Loading…
IL-1beta induced protein changes in diabetes prone BB rat islets of Langerhans identified by proteome analysis
Type I (insulin-dependent) diabetes mellitus is characterized by selective destruction of the insulin producing beta cells. Interleukin-1beta (IL-1beta) modulates the beta-cell function, protein synthesis, energy production and causes apoptosis. We have previously shown changes in the expression of...
Saved in:
Published in: | Diabetologia 2002-11, Vol.45 (11), p.1550-1561 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Type I (insulin-dependent) diabetes mellitus is characterized by selective destruction of the insulin producing beta cells. Interleukin-1beta (IL-1beta) modulates the beta-cell function, protein synthesis, energy production and causes apoptosis. We have previously shown changes in the expression of 82 out of 1 815 protein spots detected by two dimensional gel electrophoresis in IL-1beta exposed diabetes prone Bio Breeding (BB-DP) rat islets of Langerhans in vitro. The aim of this study was to identify the proteins in these 82 spots by mass spectrometry and compare these changes with those seen in IL-1beta exposed Wistar Furth (WF) rat islets.
The 82 protein spots, that changed expression after IL-1beta exposure, were all re-identified on preparative gels of 200 000 neonatal WF rat islets, cut out and subjected to mass spectrometry for identification.
Forty-five different proteins were identified from 51 spots and grouped according to function: (i) energy transduction and redox potentials; (ii) glycolytic and Krebs cycle enzymes; (iii) protein, DNA and RNA synthesis, chaperoning and protein folding; (iv) signal transduction, regulation, differentiation and apoptosis; (v) cellular defence; and (vi) other functions. Comparison of IL-1beta exposed BB-DP and WF islets showed common changes in 14 proteins and several proteins influencing similar pathways, suggesting that similar routes in the two strains lead to beta-cell destruction.
We demonstrate that proteome analysis is a powerful tool to identify proteins and pathways in BB-DP rat islets exposed to IL-1beta. |
---|---|
ISSN: | 0012-186X |