Loading…

Role of single defects in electronic transport through carbon nanotube field-effect transistors

The influence of defects on electron transport in single-wall carbon nanotube field-effect transistors (CNFETs) is probed by combined scanning gate microscopy (SGM) and scanning impedance microscopy (SIM). SGM images are used to quantify the depletion surface potential, and from this the Fermi level...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2002-11, Vol.89 (21), p.216801-216801, Article 216801
Main Authors: Freitag, Marcus, Johnson, A T, Kalinin, Sergei V, Bonnell, Dawn A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The influence of defects on electron transport in single-wall carbon nanotube field-effect transistors (CNFETs) is probed by combined scanning gate microscopy (SGM) and scanning impedance microscopy (SIM). SGM images are used to quantify the depletion surface potential, and from this the Fermi level, at individual defects along the CNFET length. SIM is used to measure the voltage distribution along the CNFET. When the CNFET is in the conducting state, SIM reveals a uniform potential drop along its length, consistent with diffusive transport. In contrast, when the CNFET is "off," potential steps develop at the position of depleted defects. High-resolution imaging of a second set of weak defects is achieved in a new "tip-gated" SIM mode.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.89.216801