Loading…

Maximal strength-training effects on force-velocity and force-power relationships explain increases in aerobic performance in humans

Maximal strength-training with an emphasis on maximal mobilization during cross-country skiing increases exercise economy when double-poling. The aim of this experiment was to investigate whether the mechanism of this increase is a change in the force-velocity relationship and the mechanical power o...

Full description

Saved in:
Bibliographic Details
Published in:European journal of applied physiology 2002-12, Vol.88 (3), p.255-263
Main Authors: Østerås, Håvard, Helgerud, Jan, Hoff, Jan
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Maximal strength-training with an emphasis on maximal mobilization during cross-country skiing increases exercise economy when double-poling. The aim of this experiment was to investigate whether the mechanism of this increase is a change in the force-velocity relationship and the mechanical power output. A group of 19 cross-country skiers having an average peak oxygen uptake of 255 ml x kg(-0.67) body mass x min(-1) or 61 ml x kg(-1) x min(-1) were randomly assigned to either a high resistance-training group (n=10) or a control group (n=9). Upper body endurance was tested on a ski ergometer. The high-resistance-training group trained for 15 min on three occasions a week for 9 weeks. Training consisted of three series of five repetitions using 85% of one repetition maximum (1RM), with emphasis on high velocity in the concentric part of the movement. Upper body exercise economy, 1RM and time to exhaustion increased significantly in the high resistance-training group, but was unchanged in the control group. Peak power and the velocities for a given load increased significantly, except for the two lowest loads. We conclude that the increased exercise economy after a period of upper body high resistance-training can be partly explained by a specific change in the force-velocity relationship and the mechanical power output.
ISSN:1439-6319
1439-6327
DOI:10.1007/s00421-002-0717-y