Loading…
The crystal structure of the hexadeca-heme cytochrome Hmc and a structural model of its complex with cytochrome c(3)
Sulfate-reducing bacteria contain a variety of multi-heme c-type cytochromes. The cytochrome of highest molecular weight (Hmc) contains 16 heme groups and is part of a transmembrane complex involved in the sulfate respiration pathway. We present the 2.42 A resolution crystal structure of the Desulfo...
Saved in:
Published in: | Structure (London) 2002-12, Vol.10 (12), p.1677-1686 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sulfate-reducing bacteria contain a variety of multi-heme c-type cytochromes. The cytochrome of highest molecular weight (Hmc) contains 16 heme groups and is part of a transmembrane complex involved in the sulfate respiration pathway. We present the 2.42 A resolution crystal structure of the Desulfovibrio vulgaris Hildenborough cytochrome Hmc and a structural model of the complex with its physiological electron transfer partner, cytochrome c(3), obtained by NMR restrained soft-docking calculations. The Hmc is composed of three domains, which exist independently in different sulfate-reducing species, namely cytochrome c(3), cytochrome c(7), and Hcc. The complex involves the last heme at the C-terminal region of the V-shaped Hmc and heme 4 of cytochrome c(3), and represents an example for specific cytochrome-cytochrome interaction. |
---|---|
ISSN: | 0969-2126 |
DOI: | 10.1016/S0969-2126(02)00909-7 |