Loading…
Activation zones in cat visual cortex evoked by electrical retina stimulation
A retina implant for restoring simple basic visual perception in patients who are blind due to photoreceptor loss requires optimisation of stimulation parameters for obtaining high spatio-temporal resolution. We developed effective low-power epi-retinal stimulation and intracortical recording in sem...
Saved in:
Published in: | Graefe's archive for clinical and experimental ophthalmology 2002-11, Vol.240 (11), p.947-954 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A retina implant for restoring simple basic visual perception in patients who are blind due to photoreceptor loss requires optimisation of stimulation parameters for obtaining high spatio-temporal resolution. We developed effective low-power epi-retinal stimulation and intracortical recording in semichronically prepared cats.
Individually driveable fibre electrodes were inserted through a small scleral incision and positioned at the area centralis. Polyimide-platinum film electrodes were inserted via a corneal incision and fixed by instillation of perfluorocarbon liquid on the internal limiting membrane. For electrical stimulation we used short charge-balanced current impulses of 100-400 micro s duration and amplitudes ranging from 1 to 100 micro A. During stimulation we recorded multiple single-cell and population activities from areas 17 and 18. Recordings were stored digitally. Stimulus-response relations including response strength, cortical activation zones, information transmission, and electrical receptive fields were analysed off-line.
We found low-threshold activations with fibre electrodes and polyimide-platinum film electrodes in close mechanical contact to the retina. Retinal stimulation with bipolar charge-balanced impulses resulted in cortical activation zones corresponding to 1-5 degrees visual angle at paracentral locations dependent on the eccentricity of the retinal stimulation point. Retino-cortical transinformation analysis revealed 20-30 bits/s per electrode, corresponding to 10-15 four-level pictures/s. Electrical receptive fields had sizes of 1-3 degrees visual angle.
Coarse visuomotor coordination and navigation seems possible with retina implants. |
---|---|
ISSN: | 0721-832X 1435-702X |
DOI: | 10.1007/s00417-002-0577-5 |