Loading…

cDNA Cloning, Heterologous Expressions, and Functional Characterization of Malonyl-Coenzyme A:Anthocyanidin 3-O-Glucoside-6"-O-Malonyltransferase from Dahlia Flowers

In the flowers of important ornamental Compositae plants, anthocyanins generally carry malonyl group(s) at their 3-glucosyl moiety. In this study, for the first time to our knowledge, we have identified a cDNA coding for this 3-glucoside-specific malonyltransferase for anthocyanins, i.e. malonyl-coe...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2002-12, Vol.130 (4), p.2142-2151
Main Authors: Hirokazu Suzuki, Toru Nakayama, Keiko Yonekura-Sakakibara, Yuko Fukui, Nakamura, Noriko, Masa-atsu Yamaguchi, Yoshikazu Tanaka, Takaaki Kusumi, Nishino, Tokuzo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the flowers of important ornamental Compositae plants, anthocyanins generally carry malonyl group(s) at their 3-glucosyl moiety. In this study, for the first time to our knowledge, we have identified a cDNA coding for this 3-glucoside-specific malonyltransferase for anthocyanins, i.e. malonyl-coenzyme A:anthocyanidin 3-O-glucoside-6"-O-malonyltransferase, from dehlia (Dahlia variabilis) flowers. We isolated a full-length cDNA (Dv3MaT) on the basis of amino acid sequences specifically conserved among anthocyanin acyltransferases of the versatile plant acyltransferase family. Dv3MaT coded for a protein of 460 amino acids. Quantitative real-time PCR analyses of Dv3MaT showed that the transcript was present in accordance with the distribution of 3MaT activities and the anthocyanin accumulation pattern in the dahlia plant. The Dv3MaT cDNA was expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity and characterized. The recombinant Dv3MaT catalyzed the regiospecific transfer of the malonyl group from malonyl-coenzyme A (Km, 18.8 μM) to pelargonidin 3-O-glucoside (Km, 46.7 μM) to produce pelargonidin 3-O-6"-O-malonylglucoside with a kcat value of 7.3 s-1. The other enzymatic profiles of the recombinant Dv3MaT were closely related to those of native anthocyanin malonyltransferase activity in the extracts of dahlia flowers. Dv3MaT cDNA was introduced into petunia (Petunia hybrida) plants whose red floral color is exclusively provided by cyanidin 3-O-glucoside and 3,5-O-diglucoside. Thirteen transgenic lines of petunia were found to produce malonylated products of these anthocyanins (11-63 mol % of total anthocyanins in the flower). The spectral stability of cyanidin 3-O-6"-O-malonylglucoside at the pHs of intracellular milieus of flowers was significantly higher than that of cyanidin 3-O-glucoside. Moreover, 6"-O-malonylation of cyanidin 3-O-glucoside effectively prevented the anthocyanin from attack of β-glucosidase. These results suggest that malonylation should serve as a strategy for pigment stabilization in the flowers.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.010447