Loading…
cAMP-Independent Role of PKA in Tonicity-Induced Transactivation of Tonicity-Responsive Enhancer/Osmotic Response Element-Binding Protein
Hypertonicity-induced increase in activity of the transcription factor tonicity-responsive enhancer/osmotic response element-binding protein (TonEBP/OREBP) protects renal cells by increasing transcription of genes, including those involved in increased accumulation of organic osmolytes. We previousl...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2002-12, Vol.99 (26), p.16800-16805 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hypertonicity-induced increase in activity of the transcription factor tonicity-responsive enhancer/osmotic response element-binding protein (TonEBP/OREBP) protects renal cells by increasing transcription of genes, including those involved in increased accumulation of organic osmolytes. We previously showed that hypertonicity increases transactivating activity of TonEBP/OREBP. Assay with a binary GAL4 transactivation system showed that the 984 C-terminal amino acids of TonEBP/OREBP (amino acids 548-1531) contain a tonicity-dependent transactivation domain (TAD). Also, amino acids 548-1531 undergo tonicity-dependent phosphorylation, and some inhibitors of protein kinases reduce the tonicity-dependent transactivation. In the present studies we examined the role of protein kinase A (PKA). Results: (i) An inhibitor of PKA (H89) reduces tonicity-dependent increases in transactivation, ORE/TonE reporter activity, and induction of aldose reductase and betaine transporter mRNAs. (ii) Overexpression of the catalytic subunit of PKA (PKAc) increases transactivation activity of amino acids 548-1531 and activity of an ORE/TonE reporter. The increases are much greater under isotonic than under hypertonic conditions. (iii) A dominant-negative PKAc reduces activity of an ORE/TonE reporter. (iv) PKAc activity increases with tonicity but cAMP does not. (v) TonEBP/OREBP and PKAc coimmunoprecipitate. (vi) amino acids 872-1271, including N- and C-terminal polyglutamine stretches, demonstrate tonicity-dependent transactivation, albeit less than amino acids 548-1531, and a similar role for PKA. Conclusions: (i) PKA plays an important role in TonEBP/OREBP activation of tonicity-dependent gene expression; (ii) PKA activation of TonEBP/OREBP appears to be cAMP-independent; and (iii) amino acids 872-1271 are sufficient for tonicity-dependent transactivation of TonEBP/OREBP. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.222659799 |