Loading…

RHYTHMICITY OF ENGRAFTMENT AND ALTERED CELL CYCLE KINETICS OF CYTOKINE-CULTURED MURINE MARROW IN SIMULATED MICROGRAVITY COMPARED WITH STATIC CULTURES

Space flight with associated microgravity is complicated by “astronaut's anemia” and other hematologic abnormalities. Altered erythroid differentiation, red cell survival, plasma volume, and progenitor numbers have been reported. We studied the impact of microgravity on engraftable stem cells,...

Full description

Saved in:
Bibliographic Details
Published in:In vitro cellular & developmental biology. Animal 2002-06, Vol.38 (6), p.343-351
Main Authors: COLVIN, GERALD A, LAMBERT, JEAN-FRANÇOIS, CARLSON, JANE E, McAULIFFE, CHRISTINA I, ABEDI, MEHRDAD, QUESENBERRY, PETER J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Space flight with associated microgravity is complicated by “astronaut's anemia” and other hematologic abnormalities. Altered erythroid differentiation, red cell survival, plasma volume, and progenitor numbers have been reported. We studied the impact of microgravity on engraftable stem cells, culturing marrow cells in rotary wall vessel (RWV) culture chambers mimicking microgravity and in normal gravity nonadherent Teflon bottles. A quantitative competitive engraftment technique was assessed under both conditions in lethally irradiated hosts. We assessed 8-wk engraftable stem cells over a period spanning at least one cell cycle for cytokine (FLT-3 ligand, thrombopoietin [TPO], steel factor)–activated marrow stem cells. Engraftable stem cells were supported out to 56 h under microgravity conditions, and this support was superior to that seen in normal-gravity Teflon bottle cultures out to 40 h, with Teflon bottle culture support superior to RWV from 40 to 56 h. A nadir of stem cell number was seen at 40 h in Teflon and 48 h in RWV, suggesting altered marrow stem cell cycle kinetics under microgravity. This is the first study of engraftable stem cells under microgravity conditions, and the differences between microgravity and normal gravity cultures may present opportunities for unique future stem cell expansion strategies.
ISSN:1071-2690
1543-706X
1543-706X
DOI:10.1290/1071-2690(2002)038<0343:ROEAAC>2.0.CO;2