Loading…
Optimal Design of the Tubular Microporous Membrane Aerator for Shear-Sensitive Cell Cultures
In this paper, a theoretical analysis of oxygen transport across the tubular microporous membrane is described. This analysis has provided some insight into the optimal design of the membrane aerator. It was found in this study, at fixed inlet pressure, that the overall membrane oxygen transfer rate...
Saved in:
Published in: | Biotechnology progress 1992-01, Vol.8 (1), p.19-24 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a theoretical analysis of oxygen transport across the tubular microporous membrane is described. This analysis has provided some insight into the optimal design of the membrane aerator. It was found in this study, at fixed inlet pressure, that the overall membrane oxygen transfer rate increases with increased tubing length only up to a certain length, i.e., the “critical length”. When a large membrane surface area is required, the fiber should be divided into parallel segments to increase the overall oxygen transfer rate. A manifold or a gas distributor can then be used to distribute gas into segments of tubing. The length of each segment cannot exceed the critical length. In addition, shorter tube segments should give a higher oxygen transfer rate per unit tube length; however, this advantage is counterbalanced by the fact that gas distribution into huge numbers of parallel tubings may not be uniform. |
---|---|
ISSN: | 8756-7938 1520-6033 |
DOI: | 10.1021/bp00013a004 |