Loading…
Synthesis, cardiac electrophysiology, and .beta.-blocking activity of novel arylpiperazines with potential as class II/III antiarrhythmic agents
A series of novel arylpiperazines have been prepared in an attempt to incorporate both class II (beta-receptor blocking) and class III antiarrhythmic properties in a single molecule. The key step in the preparation of the new compounds involves a regioselective heterocyclic ring formation. All but f...
Saved in:
Published in: | Journal of medicinal chemistry 1992-02, Vol.35 (4), p.743-750 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A series of novel arylpiperazines have been prepared in an attempt to incorporate both class II (beta-receptor blocking) and class III antiarrhythmic properties in a single molecule. The key step in the preparation of the new compounds involves a regioselective heterocyclic ring formation. All but four compounds significantly prolonged action potential duration in canine cardiac Purkinje fibers (class III activity). All but one of the compounds demonstrated beta-receptor affinity in a competitive binding assay and three had beta 1-receptor selectivity. Compared to sotalol, a reference class II/III agent, arylpiperazine 7a (4-[(methylsulfonyl)amino]-N-[(4- phenylpiperazin-2-yl)methyl]benzamide) demonstrated beta 1-selectivity and was 1 order of magnitude more potent in the in vitro class III and the beta 1-receptor screens. Compound 7a was evaluated further and found to be effective in preventing programmed electrical stimulation-induced arrhythmias in conscious dogs (class III activity) and against epinephrine-induced arrhythmias in halothane anesthetized dogs (class II activity). |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/jm00082a016 |